PREPARED BY:
SALLY SALAM YOUSIF
MAHA MATTE HANA

SUPERVIDE BY:
FENK DLAWER MIRAN

Content

- Introduction about site
- Sun analysis of the site
- Light analysis of single house
- Thermal analysis of building material
- Wind analysis
- Heat gain calculation by occupants
- Heat gain calculation by ventilation
- Main problem and suggestion solution

Lebanese Village Apartments

PEACE AND LIFE OVER 240000 M2 IN ERBIL.

\%40 of the project is green area

About the project ...

The Lebanese Village is a residential and commercial, mixed use development situated in the rapidly growing province of Erbil, the capital of Kurdistan - Iraq.
Over a build-up area of 240000 m 2 , the Lebanese Village is one of the most pioneering investments in Erbil, featuring 3400 residential units between spacious villas and apartments in different sizes promising a great family environment, a commercial component ready to accommodate various retail needs, wellappointed furnished apartments units, offices' areas in various sizes, and a community landscaped park with walkways.
The project itself is a unique lifestyle center with a wide variety of recreational amenities and necessities, such as a health \& sports club, restaurants, a clubhouse with an outdoor swimming pool, a nursery, a school, a medical center, and a mosque.
SITE PLAN ..

Sun and wind analysis of the site

OBJECT ATTRIBUTES

Total Radiation
Value Range: $11900000-1743000.0 \mathrm{~Wh} / \mathrm{m} 2$ - $\begin{aligned} & \text { Value Rectrve: }\end{aligned}$

$\underset{1743000+}{W_{1} / 2}$

Wind speed

$$
\text { Zoom Im } 3 \mathrm{~m} \text { 6m yTD iv All }
$$

DISTANCE BETWEEN BLOCKS AND VILLAS ...

- Between TYPE BVILLAS is 2 meters (semi detached)
-Between TYPE A VILLAS is 2.1 meters
-Between TYPE B BLOCKS is 21.5 meters of green
-area and sittings
-ZONE D distance between DI and D2 is 660 cm

Light analysis of single house

Total glazing window
Total wall area
1090 mm
$=0.2 \mathrm{~mm}$
4110 mm

Ground Floor Plan

Windows Types

Total glazing window

$$
\begin{aligned}
& \text { Total wall area } \\
& \frac{1090 \mathrm{~mm}}{3500 \mathrm{~mm}}=0.3 \mathrm{~mm}
\end{aligned}
$$

Elevation

Type 3

Shading Device

We Don't have any Shading Device

Ground floor

First floor

Materials :

Layer	Thickness	conductivity	Resistance
Outside thermal resistance			0.04
inside thermal resistance			0.13
Single glass window	0.02	0.65	$0.02 / 0.65=0.3$
Total thermal resistance			0.47

Overall U value: $U=1 / R=1 / 0.47=2.13 W /$ M.K

Window

Layer	Thickenss	conductivt	Resistance
Ousisie themal essistance			0.04
inside temmal esisiance			0.13
wood Door	0.04	0.17	0.040.17=0.235
Toatithemal esisiance			0.405

Layer	Thickness	conductivity	Resistance
Outside thermal resistance			0.04
inside thermal resistance			0.13
concrete	0.2	0.5	$0.2 / 0.5=0.4$
gypsum board	0.02	0.25	$0.02 / 0.25=0.8$
wall paint	0.01	0.65	$0.01 / 0.65=0.05$
Total thermal resistance			1.42
Overall U value: U=1/R=1/1.42=0.70W/M.K			

wall

Layer	Thickness	conductivity	Resistance
Outside thermal resistance			0.04
inside thermal resistance			0.13
concrete	0.2	0.5	$0.2 / 0.5=0.4$
Mortar	0.02	0.719	$0.02 / 0.719=0.0278$
Ceramic Tile	0.03	1.196	$0.03 / 1.196=0.025$
Total thermal resistance			0.623

Overall U value: $U=1 / R=1 / 0.623=1.6 \mathrm{~W} / \mathrm{M} . \mathrm{K}$
Floor

Layer	Thickness	conductivity	Resistance
Outside thermal resistance			0.04
inside thermal resistance			0.13
concrete	0.2	0.5	$0.2 / 0.5=0.4$
Total thermal resistance			0.57
Overall U value: U=1/R=1/0.57=1.75W/M.K			
ROOf			

Materials :

-Glass For Windows
-The Pattern of Window Is PVC

The elevation is made from ashlar

The Fence is made from concrete and painted with yellow color

The Door Is made from Metal

The Roof is made from Red Tile

The Door of Garage is made from Aluminum

Wind analysis

The trees surrounding the site can provide protection of hot and cold for villas and houses
But they cant provide for the high rise buildings

Paln

3D view

Solution for high rise building

Wind Direction

Sun Direction

STREET SECTION ...

The heat gain calc. by occuppants

kitchen (2 person)
Sensible heat gain $=78.5 \mathrm{w}$
Latent heat gain $=78.5 \mathrm{w}$
2*78.5
Total sensible heat gain $=$
1000
$2 * 78.5$

| 1000 |
| :--- |$=0.157 \mathrm{kw}$

$=0.157 \mathrm{kw}$

Total heat gain $=0.157+0.157=0.314 \mathrm{kw}$

Seating room (6 person)
Sensible heat gain $=70 \mathrm{w}$
Latent heat gain $=44 \mathrm{w}$
Total sensible heat gain $=\frac{6 * 70}{1000}=0.42 \mathrm{kw}$

Total latent heat gain $=$
6*44
1000
Total heat gain $=0.42+0.267=0.687 \mathrm{kw}$

Store (I person)

Sensible heat gain $=77.5 \mathrm{w}$
Latent heat gain $=71.5 \mathrm{w}$
Total latent heat gain $=\frac{1 * 77.5}{1000}=0.0775 \mathrm{kw}$
Total latent heat gain $=\frac{1 * 71.5}{1000}=0.715 \mathrm{kw}$

Total heat gain $=0.0775+0.715=0.7925 \mathrm{kw}$

Master bed room (2 person)
Sensible heat gain $=70 \mathrm{w}$
Latent heat gain $=30 \mathrm{w}$
Total sensible heat gain $=\frac{2 * 70}{1000}=0.14 \mathrm{kw}$
Total sensible heat gain $=\frac{2 * 30}{1000}=0.2 \mathrm{kw}$

Total heat gain $=$
$0.14+0.2=0.34 \mathrm{kw}$

Corridor (2 person)
Sensible heat gain $=71.5 \mathrm{w}$
Latent heat gain $=71.5 \mathrm{w}$

Total sensible heat gain $=$$2 * 71.5$ 1000 $2 * 71.5$
Total latent heat gain $=0.143 \mathrm{kw}$
1000

Total heat gain $=0.143+0.143=0.286 \mathrm{kw}$

Bed room (3person)
Sensible heat gain $=60 \mathrm{w}$
Latent heat gain $=30 \mathrm{w}$

Total sensible heat gain $=$| $3 * 60$ |
| :---: |
| 1000 |
| $3 * 30$ |$=0.18 \mathrm{kw}$

Total latent heat gain $=0.09 \mathrm{kw}$ 1000

Total heat gain $=0.42+0.267=0.27 \mathrm{kw}$

Bath (I person)
Sensible heat gain $=64 \mathrm{w}$
Latent heat gain $=30 \mathrm{w}$
Total sensible heat gain $=\frac{I^{* 64}}{1000}=0.064 \mathrm{kw}$

Total latent heat gain $=\longleftrightarrow \mathrm{I}^{* 30}=0.03 \mathrm{kw}$ 1000

Total heat gain $=0.03+0.064=0.27 \mathrm{kw}$

Total heat gain of the house $=$ 2.6895

The heat gain calc. by ventilation

$$
\text { Air Changes / hr }=\frac{\text { CFM } * 60 \text { MIN }}{\substack{\text { VOLUME OF } \\ \text { ROOM }}}
$$

$$
\text { Bath }=\frac{300 * 60}{2 * 2.5 * 3}=1200
$$

	300 * 60
KITCHEN =	$4 * 5 * 3=300$
	300 * 60
SITTING =	$=129.8$
ROOM	8.4 * 5.5 *3
	300 * 60
STORE $=$	$\frac{1.5 * 2.5 * 3}{}=1600$
	300 * 60
MASTER BED =	= 342.8
ROOM	5*3.5*3
CORRIDOR $=$	300 * 60
	4*7*3
	300 * 60
BED ROOM =	$=493$

Main Problem:

There isn't any Shading Devise For window

There isn't any
Insulations
For wall

The window is Single glass

There isn't enough Trees surrounding the building

We must use more Trees near the window To protect from sun and wind

