Polynomial Rings

Sanhan M. S. Khasraw

Salahaddin University-Erbil 13th March, 2017

Sanhan M. S. Khasraw Polynomial Rings

<- ↓ ↓ < ≥ >

< ≣⇒

æ

Definition: Let *R* be a commutative ring with 1. The **polynomial** ring *R*[*x*] in indeterminate *x* with coefficients from *R* is the set of all formal sums $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with $n \ge 0$ and $a_i \in R$. That is, $R[x] = \{a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0; n \ge 0; a_i \in R\}.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

Definition: Let *R* be a commutative ring with 1. The **polynomial** ring *R*[*x*] in indeterminate *x* with coefficients from *R* is the set of all formal sums $a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with $n \ge 0$ and $a_i \in R$. That is, $R[x] = \{a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0; n \ge 0; a_i \in R\}.$

In order to make a ring out of R[x] we must be able to recognize when two elements in it are **equal**, we must be able to **add** and **multiply** elements of R[x] so that the axioms defining a ring hold true for R[x]. This will be our initial goal.

(本部)) (本語)) (本語)) (語)

Definition: If $f(x) = a_0 + a_1x + ... + a_mx^m$ and $g(x) = b_0 + b_1x + ... + b_nx^n$ are in R[x], then f(x) = g(x) if and only if for every integer $i \ge 0$, $a_i = b_i$.

< 🗇 > < 🖃 >

æ

Definition: If $f(x) = a_0 + a_1x + ... + a_mx^m$ and $g(x) = b_0 + b_1x + ... + b_nx^n$ are in R[x], then f(x) = g(x) if and only if for every integer $i \ge 0, a_i = b_i$.

Thus, two polynomials are said to be equal if and only if their corresponding coefficients are equal.

A (1) > (1) > (1)

Definition: If $f(x) = a_0 + a_1x + \cdots + a_mx^m$ and $g(x) = b_0 + b_1x + \cdots + b_nx^n$ are both in R[x], then $f(x) + g(x) = c_0 + c_1x + \cdots + c_tx^t$ where for each $i, c_i = a_i + b_i$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

Definition: If $f(x) = a_0 + a_1x + \dots + a_mx^m$ and $g(x) = b_0 + b_1x + \dots + b_nx^n$ are both in R[x], then $f(x) + g(x) = c_0 + c_1x + \dots + c_tx^t$ where for each $i, c_i = a_i + b_i$.

In other words, add two polynomials by adding their coefficients and collecting terms. To add 1 + x and $3 - 2x + x^2$ we consider 1 + x as $1 + x + 0x^2$ and add, according to the recipe given in the definition, to obtain as their sum $4 - x + x^2$.

伺下 イヨト イヨト

The most complicated item to define for R[x] is the multiplication.

イロン イヨン イヨン イヨン

æ

The most complicated item to define for R[x] is the multiplication.

Definition: If $f(x) = a_0 + a_1x + \cdots + a_mx^m$ and $g(x) = b_0 + b_1x + \cdots + b_nx^n$, then

$$f(x)g(x) = c_0 + c_1x + \cdots + c_kx^k$$

where

$$c_t = a_t b_0 + a_{t-1} b_1 + a_{t-2} b_2 + \cdots + a_0 b_t.$$

イロン イヨン イヨン イヨン

æ

The most complicated item to define for R[x] is the multiplication.

Definition: If
$$f(x) = a_0 + a_1x + \cdots + a_mx^m$$
 and $g(x) = b_0 + b_1x + \cdots + b_nx^n$, then

$$f(x)g(x) = c_0 + c_1x + \cdots + c_kx^k$$

where

$$c_t = a_t b_0 + a_{t-1} b_1 + a_{t-2} b_2 + \cdots + a_0 b_t.$$

This definition says nothing more than: multiply the two polynomials by multiplying out the symbols formally, use the relation $x^{\alpha}x^{\beta} = x^{\alpha+\beta}$ and collect terms.

| 4 回 2 4 U = 2 4 U =

That is, the degree of f(x) is the largest integer *i* for which the ith coefficient of f(x) is not 0.

・ 回 ト ・ ヨ ト ・ ヨ ト

That is, the degree of f(x) is the largest integer *i* for which the ith coefficient of f(x) is not 0.

We say a polynomial is **constant** if its degree is 0.

・日・ ・ ヨ・ ・ ヨ・

That is, the degree of f(x) is the largest integer *i* for which the ith coefficient of f(x) is not 0.

We say a polynomial is **constant** if its degree is 0.

We say a polynomial is **monic** if $a_n = 1$.

・回 ・ ・ ヨ ・ ・ ヨ ・

That is, the degree of f(x) is the largest integer *i* for which the ith coefficient of f(x) is not 0.

We say a polynomial is **constant** if its degree is 0.

We say a polynomial is **monic** if $a_n = 1$.

We say a polynomial is **linear** if n = 1.

・ 回 ト ・ ヨ ト ・ ヨ ト …

That is, the degree of f(x) is the largest integer *i* for which the ith coefficient of f(x) is not 0.

We say a polynomial is **constant** if its degree is 0.

We say a polynomial is **monic** if $a_n = 1$.

We say a polynomial is **linear** if n = 1.

We **<u>do not</u>** define the degree of the zero polynomial.

米部 シネヨシネヨシ 三日

Remark: If f(x) and g(x) are two polynomials over a ring R, then (1) $deg(f(x) + g(x)) \le max\{degf(x), degg(x)\}$. (2) $deg(f(x) \cdot g(x)) \le degf(x) + degg(x)$.

< 🗇 > < 🖃 >

2

Remark: If f(x) and g(x) are two polynomials over a ring R, then (1) $deg(f(x) + g(x)) \le max\{degf(x), degg(x)\}$. (2) $deg(f(x) \cdot g(x)) \le degf(x) + degg(x)$.

Example: Let $f(x) = 1 + 3x + 2x^5$ and $g(x) = x + 3x^2$ be two polynomials in $Z_6[x]$ for which degf(x) = 5 and degg(x) = 2.

Then $f(x) \cdot g(x) = x + 3x^3 + 2x^6$ has degree 6. Thus, $degf(x) + degg(x) = 7 \neq deg(f(x) \cdot g(x)) = 6.$

· < @ > < 문 > < 문 > _ 문

Theorem: Let R be an integral domain and f(x), g(x) be two nonzero elements of R[x]. Then

- 1. $deg(f(x) \cdot g(x)) = degf(x) + degg(x)$, and
- 2. either f(x) + g(x) = 0 or $deg(f(x) + g(x)) \le max\{degf(x), degg(x)\}.$

・回 ・ ・ ヨ ・ ・ ヨ ・ …

2

Theorem: Let *R* be an integral domain and f(x), g(x) be two nonzero elements of R[x]. Then

1.
$$deg(f(x) \cdot g(x)) = degf(x) + degg(x)$$
, and

2. either
$$f(x) + g(x) = 0$$
 or
 $deg(f(x) + g(x)) \le max\{degf(x), degg(x)\}.$

Corollary: If the ring R is an integral domain, then so is R[x].

<回と < 目と < 目と

æ

Theorem(Division Algorithm): Let *R* be a commutative ring with 1 and $f(x), g(x) \neq 0$ be polynomials in R[x], with the leading coefficient of g(x) an invertible element. Then there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x) = q(x) \cdot g(x) + r(x)$, where either r(x) = 0 or degr(x) < degg(x).

Theorem(Division Algorithm): Let R be a commutative ring with 1 and $f(x), g(x) \neq 0$ be polynomials in R[x], with the leading coefficient of g(x) an invertible element. Then there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x) = q(x) \cdot g(x) + r(x)$, where either r(x) = 0 or degr(x) < degg(x).

Example: Let $f(x) = x^4 + 4x^3 + x^2 + 4x + 1$, $g(x) = x^2 + 2x + 1$ be polynomials in $Z_7[x]$. Then $f(x) = x^4 + 4x^3 + x^2 + 4x + 1 = (x^2 + 2x + 3)(x^2 + 2x + 1) + (3x + 5)$.

· < @ > < 문 > < 문 > _ 문

Definition: Let *R* be a commutative ring with 1 and *r* be an arbitrary element of *R*. For each polynomial $f(x) = a_0 + a_1x + \dots + a_nx^n$ in R[x], we may define $f(r) = a_0 + a_1r + \dots + a_nr^n$. If f(r) = 0, we call the element *r* a **root** or **zero** of f(x).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition: Let *R* be a commutative ring with 1 and *r* be an arbitrary element of *R*. For each polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$ in R[x], we may define $f(r) = a_0 + a_1r + \cdots + a_nr^n$. If f(r) = 0, we call the element *r* a **root** or **zero** of f(x).

Example: In $Z_2[x]$, each of 1 and 0 is root of the polynomial $f(x) = x^2 + x$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Definition: Let *R* be a commutative ring with 1. If f(x) and $g(x) \neq 0$ are in R[x], we say that g(x) is a **factor** of f(x) [or g(x) divides f(x)] if there exists some polynomial $h(x) \in R[x]$ for which $f(x) = h(x) \cdot g(x)$.

イロト イヨト イヨト イヨト

3

Definition: Let *R* be a commutative ring with 1. If f(x) and $g(x) \neq 0$ are in R[x], we say that g(x) is a **factor** of f(x) [or g(x) divides f(x)] if there exists some polynomial $h(x) \in R[x]$ for which $f(x) = h(x) \cdot g(x)$.

Example: If $f(x) \in \mathbb{Z}[x]$, where $f(x) = x^2 + 2x - 3 = (x - 1)(x + 3)$, then (x - 1) is a factor of f(x).

イロン イ部ン イヨン イヨン 三日

Theorem(Remainder Theorem): Let R be a commutative ring with 1. If $f(x) \in R[x]$ and $a \in R$, then there is a unique polynomial $q(x) \in R[x]$ such that f(x) = (x - a)q(x) + f(a).

Theorem(Remainder Theorem): Let R be a commutative ring with 1. If $f(x) \in R[x]$ and $a \in R$, then there is a unique polynomial $q(x) \in R[x]$ such that f(x) = (x - a)q(x) + f(a).

Corollary (Factorization Theorem): The polynomial $f(x) \in R[x]$ is divisible by x - a if and only if a is a root of f(x).

Theorem: Let R be an integral domain and $f(x) \in R[x]$ be a nonzero polynomial of degree n. Then f(x) has at most n distinct roots in R.

< 🗇 > < 🖃 >

æ

Theorem: Let R be an integral domain and $f(x) \in R[x]$ be a nonzero polynomial of degree n. Then f(x) has at most n distinct roots in R.

Example: consider the polynomial $x^p - x \in Z_p[x]$, where p is a prime.

Since the nonzero elements of Z_p form a cyclic group under multiplication of order p-1, we must have $a^{p-1} = 1$ or $a^p = a$ for every $0 \neq a \in Z_p$.

But the last equation clearly holds when a = 0, so that every element of Z_p is a root of the polynomial $x^p - x$.

・ロン ・回 と ・ ヨ と ・ ヨ と

・ロト ・回ト ・ヨト ・ヨト

æ

For example, $R = Z_2 \times Z_2 = \{(0,0), (1,0), (0,1), (1,1)\}$. Then R has divisors of zero. Let $f(x) = x^2 + x \in R[x]$. Then every element in R is a root of f(x).

< 🗇 > < 🖃 >

For example, $R = Z_2 \times Z_2 = \{(0,0), (1,0), (0,1), (1,1)\}$. Then R has divisors of zero. Let $f(x) = x^2 + x \in R[x]$. Then every element in R is a root of f(x).

Example: Let the polynomial $f(x) = x^2 + 1$ be in $H[\mathbb{R}]$. Then i, j, k are roots for f(x) in $H[\mathbb{R}]$.

(人間) とうり くうり

For example, $R = Z_2 \times Z_2 = \{(0,0), (1,0), (0,1), (1,1)\}$. Then R has divisors of zero. Let $f(x) = x^2 + x \in R[x]$. Then every element in R is a root of f(x).

Example: Let the polynomial $f(x) = x^2 + 1$ be in $H[\mathbb{R}]$. Then i, j, k are roots for f(x) in $H[\mathbb{R}]$.

In fact it has infinite roots in $H[\mathbb{R}]$.

- - 4 回 ト - 4 回 ト

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then f(x) has at least one root in \mathbb{C} .

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then f(x) has at least one root in \mathbb{C} .

Corollary: If $f(x) \in \mathbb{C}[x]$ is a polynomial of degree n>0, then f(x) can be expressed in $\mathbb{C}[x]$ as a product of n (not necessarily distinct) linear factors.

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then f(x) has at least one root in \mathbb{C} .

Corollary: If $f(x) \in \mathbb{C}[x]$ is a polynomial of degree n>0, then f(x) can be expressed in $\mathbb{C}[x]$ as a product of n (not necessarily distinct) linear factors.

Remark: For any ring R, R[x] is not a field. That is, no element of R[x] which has positive degree can have a multiplicative inverse.

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then f(x) has at least one root in \mathbb{C} .

Corollary: If $f(x) \in \mathbb{C}[x]$ is a polynomial of degree n>0, then f(x) can be expressed in $\mathbb{C}[x]$ as a product of n (not necessarily distinct) linear factors.

Remark: For any ring R, R[x] is not a field. That is, no element of R[x] which has positive degree can have a multiplicative inverse.

Suppose $f(x) \in R[x]$ with degf(x)>0. If $f(x) \cdot g(x) = 1$ for some $g(x) \in R[x]$, then $0 = deg1 = deg(f(x) \cdot g(x)) = degf(x) + degg(x) \neq 0$, a contradiction.

(本部) (本語) (本語) (語)

- 4 回 2 - 4 □ 2 - 4 □

æ

Corollary: A nontrivial ideal of $\mathbb{F}[x]$ is maximal if and only if it is a prime ideal.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

æ

Corollary: A nontrivial ideal of $\mathbb{F}[x]$ is maximal if and only if it is a prime ideal.

Definition: A nonconstant polynomial $f(x) \in \mathbb{F}[x]$ is said to be **irreducible** in $\mathbb{F}[x]$ if and only if f(x) cannot be expressed as the product of two polynomials of positive degree. Otherwise, f(x) is **reducible** in $\mathbb{F}[x]$.

・回・ ・ヨ・ ・ヨ・

Corollary: A nontrivial ideal of $\mathbb{F}[x]$ is maximal if and only if it is a prime ideal.

Definition: A nonconstant polynomial $f(x) \in \mathbb{F}[x]$ is said to be **irreducible** in $\mathbb{F}[x]$ if and only if f(x) cannot be expressed as the product of two polynomials of positive degree. Otherwise, f(x) is **reducible** in $\mathbb{F}[x]$.

Example: $f(x) = x^2 + 1$ is irreducible in $\mathbb{R}[x]$, but it is reducible in both $\mathbb{C}[x]$ and $Z_2[x]$.

(日) (同) (E) (E) (E)

Example: Any linear polynomial $f(x) = ax + b, a \neq 0$, is irreducible in $\mathbb{F}[x]$.

æ

Example: Any linear polynomial $f(x) = ax + b, a \neq 0$, is irreducible in $\mathbb{F}[x]$. Since the degree of a product of two nonzero polynomials is the sum of the degrees of the factors, it follows that a representation $ax + b = g(x) \cdot h(x)$ with 0 < degg(x) < 1, 0 < degh(x) < 1 is impossible. Thus, every reducible polynomial has degree at least 2. **Example:** Any linear polynomial $f(x) = ax + b, a \neq 0$, is irreducible in $\mathbb{F}[x]$. Since the degree of a product of two nonzero polynomials is the sum of the degrees of the factors, it follows that a representation $ax + b = g(x) \cdot h(x)$ with 0 < degg(x) < 1, 0 < degh(x) < 1 is impossible. Thus, every reducible polynomial has degree at least 2.

Remark: If f(x) is a polynomial over \mathbb{F} which has a root in \mathbb{F} , then f(x) is reducible in $\mathbb{F}[x]$.

Example: Any linear polynomial f(x) = ax + b, $a \neq 0$, is irreducible in $\mathbb{F}[x]$. Since the degree of a product of two nonzero polynomials is the sum of the degrees of the factors, it follows that a representation $ax + b = g(x) \cdot h(x)$ with 0 < degg(x) < 1, 0 < degh(x) < 1 is impossible. Thus, every reducible polynomial has degree at least 2.

Remark: If f(x) is a polynomial over \mathbb{F} which has a root in \mathbb{F} , then f(x) is reducible in $\mathbb{F}[x]$.

Theorem: Let \mathbb{F} be a field and $f(x) \in \mathbb{F}[x]$ be of degree 2 or 3. Then f(x) is reducible in $\mathbb{F}[x]$ if and only if f(x) has a root in \mathbb{F} .

▲圖> ▲屋> ▲屋>

Theorem: If \mathbb{F} is a field, the following statements are equivalent:

- 1. f(x) is an irreducible polynomial in $\mathbb{F}[x]$.
- 2. The principal ideal (f(x)) is a maximal(prime) ideal of $\mathbb{F}[x]$.
- 3. The quotient ring $\mathbb{F}[x]/(f(x))$ is a field.

Theorem: If \mathbb{F} is a field, the following statements are equivalent:

- 1. f(x) is an irreducible polynomial in $\mathbb{F}[x]$.
- 2. The principal ideal (f(x)) is a maximal(prime) ideal of $\mathbb{F}[x]$.
- 3. The quotient ring $\mathbb{F}[x]/(f(x))$ is a field.

Unique Factorization Theorem: Each polynomial $f(x) \in \mathbb{F}[x]$ of positive degree is the product of a nonzero element of \mathbb{F} and irreducible monic polynomials of $\mathbb{F}[x]$.

・ 回 と ・ ヨ と ・ ヨ と

Theorem(Eisenstein Criterion): Let

 $f(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial in $\mathbb{Z}[x]$. Suppose that for some prime number $p, p \nmid a_n, p \mid a_0, p \mid a_1, \cdots, p \mid a_{n-1}$ and $p^2 \nmid a_0$. Then f(x) is irreducible in $\mathbb{Q}[x]$.

Theorem(Eisenstein Criterion): Let

 $f(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial in $\mathbb{Z}[x]$. Suppose that for some prime number $p, p \nmid a_n, p \mid a_0, p \mid a_1, \cdots, p \mid a_{n-1}$ and $p^2 \nmid a_0$. Then f(x) is irreducible in $\mathbb{Q}[x]$.

Example: The polynomial $f(x) = 3 - 45x + 18x^2 + 2x^5$ is irreducible in $\mathbb{Q}[x]$. If we take p = 3, then $3 \mid 3, 3 \mid -45, 3 \mid 18, 3 \nmid 2$ and $3^2 \nmid 3$. By Eisenstein Criterion, f(x) is irreducible in $\mathbb{Q}[x]$.

(4回) (4回) (4回)

Theorem(Eisenstein Criterion): Let

 $f(x) = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial in $\mathbb{Z}[x]$. Suppose that for some prime number $p, p \nmid a_n, p \mid a_0, p \mid a_1, \cdots, p \mid a_{n-1}$ and $p^2 \nmid a_0$. Then f(x) is irreducible in $\mathbb{Q}[x]$.

Example: The polynomial $f(x) = 3 - 45x + 18x^2 + 2x^5$ is irreducible in $\mathbb{Q}[x]$. If we take p = 3, then $3 \mid 3, 3 \mid -45, 3 \mid 18, 3 \nmid 2$ and $3^2 \nmid 3$. By Eisenstein Criterion, f(x) is irreducible in $\mathbb{Q}[x]$.

Remark: If the condition of Eisenstein Criterion is not satisfied in a polynomial, this does not mean that the polynomial is reducible. **For example**: $f(x) = x^2 + 1$ in $\mathbb{Q}[x]$ is irreducible and the condition of Eisenstein Criterion is not satisfied.

(4回) (注) (注) (注) (注)

Theorem: If $\frac{r}{s}$ is a root of the polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$ in $\mathbb{Q}[x]$ in which gcd(r, s) = 1, then $r \mid a_0$ and $s \mid a_n$.

▲圖▶ ▲屋▶ ▲屋▶

Theorem: If $\frac{r}{s}$ is a root of the polynomial $f(x) = a_0 + a_1x + \cdots + a_nx^n$ in $\mathbb{Q}[x]$ in which gcd(r, s) = 1, then $r \mid a_0$ and $s \mid a_n$.

Example: The polynomial $f(x) = x^4 + 2x^3 - 2$ has no roots in \mathbb{Q} . Let $\frac{r}{s}$ is a root of f(x) with gcd(r, s) = 1, then by above theorem $r \mid -2$ and $s \mid 1$. Then we have four values for $\frac{r}{s}$, which are 1, -1, 2, -2. But none of them is a root of f(x).

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem(Kronecker): If f(x) is an irreducible polynomial in $\mathbb{F}[x]$, then there is an **extension field** of \mathbb{F} in which f(x) has a root.

글 > 글

The Use of GAP

To create, for example, the polynomial ring $P = Z_7[x]$: gap> R:= Integers mod 7; GF(7)gap>P:= PolynomialRing(R); GF(7)([x-1])

・ 回 と ・ ヨ と ・ ヨ と

The Use of GAP

```
To create, for example, the polynomial ring P = Z_7[x]:
gap> R:= Integers mod 7;
GF(7)
gap>P:= PolynomialRing(R);
GF(7)([x_1])
```

```
Suppose we want to factor the polynomial x^2 - 2 \in Z_7[x].

The command

gap> x:= X(R, "x");

x

creates the indeterminate x over the ring R.

gap> f:= x^2-2;

x^2+Z(7)^5

gap> Factors(f);

[x + Z(7), x + Z(7)^4]
```

・回 ・ ・ ヨ ・ ・ ヨ ・ …

The Use of GAP

```
To create, for example, the polynomial ring P = Z_7[x]:
gap> R:= Integers mod 7;
GF(7)
gap>P:= PolynomialRing(R);
GF(7)([x_1])
```

```
Suppose we want to factor the polynomial x^2 - 2 \in Z_7[x].
The command
gap > x := X(R, "x");
х
creates the indeterminate x over the ring R.
gap> f:= x^2-2:
x^{2}+Z(7)^{5}
gap > Factors(f);
[x + Z(7), x + Z(7)^4]
gap > IsIrreducible(f);
false
                                                     ・回 ・ ・ ヨ ・ ・ ヨ ・ …
```

gap > R := Rationals;Rationals

æ

gap> R:= Rationals; Rationals

```
Suppose we want to factor the polynomial z^2 - 2 \in \mathbb{Q}[x].

gap> z:= X(R, "z");

z

gap> f:= z^2-1;

z^2-1

gap> Factors(f);

[z - 1, z + 1]

gap> IsIrreducible(f);

false
```

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{C}[x]$. The **height** H(f) is defined to be the maximum of the magnitudes of its coefficients: $H(f) = max\{|a_i|\}, i = 0, 1, \cdots, n$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{C}[x]$. The **height** H(f) is defined to be the maximum of the magnitudes of its coefficients: $H(f) = max\{|a_i|\}, i = 0, 1, \cdots, n$.

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{C}[x]$. The **length** L(f) is similarly defined as the sum of the magnitudes of the coefficients: $L(f) = \sum_{i=0}^{n} |a_i|$.

▲圖▶ ▲屋▶ ▲屋▶

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{C}[x]$. The **height** H(f) is defined to be the maximum of the magnitudes of its coefficients: $H(f) = max\{|a_i|\}, i = 0, 1, \cdots, n$.

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{C}[x]$. The **length** L(f) is similarly defined as the sum of the magnitudes of the coefficients: $L(f) = \sum_{i=0}^{n} |a_i|$.

Example: Let $f(x) = 1 + 2x^2 \in \mathbb{C}[x]$. Then H(f) = 2 and L(f) = 3.

イロン イ部ン イヨン イヨン 三日

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in \mathbb{C}[x]$. The **Mahler measure** of $f(x) = \sum_{k=0}^n a_k x^k = a_n \prod_{k=1}^n (x - \alpha_k)$ is $M(f) = |a_n| \prod_{k=1}^n \max\{1, |\alpha_k|\}.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n \in \mathbb{C}[x]$. The **Mahler measure** of $f(x) = \sum_{k=0}^n a_k x^k = a_n \prod_{k=1}^n (x - \alpha_k)$ is $M(f) = |a_n| \prod_{k=1}^n \max\{1, |\alpha_k|\}.$

Example: Let
$$f(x) = 1 + 2x^2 \in \mathbb{C}[x]$$
. Then $f(x) = 2(x - \frac{i}{\sqrt{2}})(x + \frac{i}{\sqrt{2}})$. So, $M(f) = 2 \times 1 \times 1 = 2$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Definition: Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n \in \mathbb{C}[x]$. The **Mahler measure** of $f(x) = \sum_{k=0}^n a_k x^k = a_n \prod_{k=1}^n (x - \alpha_k)$ is $M(f) = |a_n| \prod_{k=1}^n \max\{1, |\alpha_k|\}.$

Example: Let
$$f(x) = 1 + 2x^2 \in \mathbb{C}[x]$$
. Then $f(x) = 2(x - \frac{i}{\sqrt{2}})(x + \frac{i}{\sqrt{2}})$. So, $M(f) = 2 \times 1 \times 1 = 2$.

Remark: $\binom{n}{\lfloor \frac{n}{2} \rfloor} H(f) \le M(f) \le H(f)\sqrt{n+1};$ $L(f) \le 2^n M(f) \le 2^n L(f);$ $H(f) \le L(f) \le n H(f).$

(周) (三) (三)

同 とくほ とくほと

Definition: The **detour polynomial** of Γ is defined by $D(\Gamma; x) = \sum_{\{u,v\}} x^{D(u,v)}$.

▲圖▶ ▲屋▶ ▲屋▶ ---

Definition: The **detour polynomial** of Γ is defined by $D(\Gamma; x) = \sum_{\{u,v\}} x^{D(u,v)}$.

Example: Ladder.

・ 回 と ・ ヨ と ・ モ と …

Definition: The **detour polynomial** of Γ is defined by $D(\Gamma; x) = \sum_{\{u,v\}} x^{D(u,v)}$.

Example: Ladder.

Example: Connect to group theory. Take S_3 as an example and associate a commuting graph with it

(4回) (4回) (4回)

Thanks for your attention

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ