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Polynomial Rings

Definition: Let R be a commutative ring with 1. The polynomial
ring R[x ] in indeterminate x with coefficients from R is the set of
all formal sums anx

n + an−1x
n−1 + · · ·+ a1x + a0 with n ≥ 0 and

ai ∈ R. That is,
R[x ] = {anxn + an−1x

n−1 + · · ·+ a1x + a0; n ≥ 0; ai ∈ R}.

In order to make a ring out of R[x ] we must be able to recognize
when two elements in it are equal, we must be able to add and
multiply elements of R[x ] so that the axioms defining a ring hold
true for R[x ]. This will be our initial goal.
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Operations on R[x ]

Definition: If f (x) = a0 + a1x + ...+ amx
m and

g(x) = b0 + b1x + ...+ bnx
n are in R[x ], then f (x) = g(x) if and

only if for every integer i ≥ 0, ai = bi .

Thus, two polynomials are said to be equal if and only if their
corresponding coefficients are equal.
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Operations on R[x ]

Definition: If f (x) = a0 + a1x + · · ·+ amx
m and

g(x) = b0 + b1x + · · ·+ bnx
n are both in R[x ], then

f (x) + g(x) = c0 + c1x + · · ·+ ctx
t where for each i , ci = ai + bi .

In other words, add two polynomials by adding their coefficients
and collecting terms. To add 1 + x and 3− 2x + x2 we consider
1 + x as 1 + x + 0x2 and add, according to the recipe given in the
definition, to obtain as their sum 4− x + x2.
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Operations on R[x ]

The most complicated item to define for R[x ] is the multiplication.

Definition: If f (x) = a0 + a1x + · · ·+ amx
m and

g(x) = b0 + b1x + · · ·+ bnx
n, then

f (x)g(x) = c0 + c1x + · · ·+ ckx
k

where
ct = atb0 + at−1b1 + at−2b2 + · · ·+ a0bt .

This definition says nothing more than: multiply the two
polynomials by multiplying out the symbols formally, use the
relation xαxβ = xα+β and collect terms.
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Degree of Polynomials

Definition: If f (x) = a0 + a1x + · · ·+ anx
n 6= 0 and an 6= 0, is in

R[x ], then the degree of f (x), written as degf (x), is n.

That is, the degree of f (x) is the largest integer i for which the ith
coefficient of f (x) is not 0.

We say a polynomial is constant if its degree is 0.

We say a polynomial is monic if an = 1.

We say a polynomial is linear if n = 1.

We do not define the degree of the zero polynomial.
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Degree of Polynomials

Remark: If f (x) and g(x) are two polynomials over a ring R, then
(1) deg(f (x) + g(x)) ≤ max{degf (x), degg(x)}.
(2) deg(f (x) · g(x)) ≤ degf (x) + degg(x).

Example: Let f (x) = 1 + 3x + 2x5 and g(x) = x + 3x2 be two
polynomials in Z6[x ] for which degf (x) = 5 and degg(x) = 2.

Then f (x) · g(x) = x + 3x3 + 2x6 has degree 6. Thus,
degf (x) + degg(x) = 7 6= deg(f (x) · g(x)) = 6.
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Degree of Polynomials

Theorem: Let R be an integral domain and f (x), g(x) be two
nonzero elements of R[x ]. Then

1. deg(f (x) · g(x)) = degf (x) + degg(x), and

2. either f (x) + g(x) = 0 or
deg(f (x) + g(x)) ≤ max{degf (x), degg(x)}.

Corollary: If the ring R is an integral domain, then so is R[x ].
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Division Algorithm Theorem

Theorem(Division Algorithm): Let R be a commutative ring
with 1 and f (x), g(x) 6= 0 be polynomials in R[x ], with the leading
coefficient of g(x) an invertible element. Then there exist unique
polynomials q(x), r(x) ∈ R[x ] such that f (x) = q(x) · g(x) + r(x),
where either r(x) = 0 or degr(x)<degg(x).

Example: Let f (x) = x4 + 4x3 + x2 + 4x + 1, g(x) = x2 + 2x + 1
be polynomials in Z7[x ]. Then
f (x) = x4+4x3+x2+4x+1 = (x2+2x+3)(x2+2x+1)+(3x+5).
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Root of Polynomials

Definition: Let R be a commutative ring with 1 and r be an
arbitrary element of R. For each polynomial
f (x) = a0 + a1x + · · ·+ anx

n in R[x ], we may define
f (r) = a0 + a1r + · · ·+ anr

n.
If f (r) = 0, we call the element r a root or zero of f(x).

Example: In Z2[x ], each of 1 and 0 is root of the polynomial
f (x) = x2 + x .
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Factors

Definition: Let R be a commutative ring with 1. If f (x) and
g(x) 6= 0 are in R[x ] , we say that g(x) is a factor of f (x) [or
g(x) divides f (x)] if there exists some polynomial h(x) ∈ R[x ] for
which f (x) = h(x) · g(x).

Example: If f (x) ∈ Z[x ], where
f (x) = x2 + 2x − 3 = (x − 1)(x + 3), then (x − 1) is a factor of
f (x).
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Remainder Theorem

Theorem(Remainder Theorem): Let R be a commutative ring
with 1. If f (x) ∈ R[x ] and a ∈ R, then there is a unique
polynomial q(x) ∈ R[x ] such that f (x) = (x − a)q(x) + f (a).

Corollary (Factorization Theorem): The polynomial f (x) ∈ R[x ]
is divisible by x − a if and only if a is a root of f (x).
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More about roots

Theorem: Let R be an integral domain and f (x) ∈ R[x ] be a
nonzero polynomial of degree n. Then f (x) has at most n distinct
roots in R.

Example: consider the polynomial xp − x ∈ Zp[x ] , where p is a
prime.
Since the nonzero elements of Zp form a cyclic group under
multiplication of order p − 1, we must have ap−1 = 1 or ap = a for
every 0 6= a ∈ Zp.
But the last equation clearly holds when a = 0, so that every
element of Zp is a root of the polynomial xp − x .
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More Examples

Remark: The theorem is not true if R is not an integral domain.

For example, R = Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then R
has divisors of zero. Let f (x) = x2 + x ∈ R[x ]. Then every
element in R is a root of f (x).

Example: Let the polynomial f (x) = x2 + 1 be in H[R]. Then
i , j , k are roots for f (x) in H[R].

In fact it has infinite roots in H[R].
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More Theorems

Theorem: Let C be the field of complex numbers. If f (x) ∈ C[x ]
is a polynomial of positive degree, then f (x) has at least one root
in C.

Corollary: If f (x) ∈ C[x ] is a polynomial of degree n>0, then f (x)
can be expressed in C[x ] as a product of n (not necessarily
distinct) linear factors.

Remark: For any ring R, R[x ] is not a field. That is, no element
of R[x ] which has positive degree can have a multiplicative inverse.

Suppose f (x) ∈ R[x ] with degf (x)>0. If f (x) · g(x) = 1 for some
g(x) ∈ R[x ], then
0 = deg1 = deg(f (x) · g(x)) = degf (x) + degg(x) 6= 0, a
contradiction.
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Principal Ideal Domain

Theorem: If F is a field, then F[x ] is a principal ideal domain.

Corollary: A nontrivial ideal of F[x ] is maximal if and only if it is
a prime ideal.

Definition: A nonconstant polynomial f (x) ∈ F[x ] is said to be
irreducible in F[x ] if and only if f (x) cannot be expressed as the
product of two polynomials of positive degree. Otherwise, f (x) is
reducible in F[x ].

Example: f (x) = x2 + 1 is irreducible in R[x ], but it is reducible
in both C[x ] and Z2[x ].
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Irreducibility

Example: Any linear polynomial f (x) = ax + b, a 6= 0, is
irreducible in F[x ].

Since the degree of a product of two nonzero polynomials is the
sum of the degrees of the factors, it follows that a representation
ax + b = g(x) · h(x) with 0<degg(x)<1, 0<degh(x)<1 is
impossible. Thus, every reducible polynomial has degree at least 2.

Remark: If f (x) is a polynomial over F which has a root in F,
then f (x) is reducible in F[x ].

Theorem: Let F be a field and f (x) ∈ F[x ] be of degree 2 or 3.
Then f (x) is reducible in F[x ] if and only if f (x) has a root in F.
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Remark: If f (x) is a polynomial over F which has a root in F,
then f (x) is reducible in F[x ].

Theorem: Let F be a field and f (x) ∈ F[x ] be of degree 2 or 3.
Then f (x) is reducible in F[x ] if and only if f (x) has a root in F.
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Unique Factorization Theorem

Theorem: If F is a field, the following statements are equivalent:

1. f (x) is an irreducible polynomial in F[x ].

2. The principal ideal (f (x)) is a maximal(prime) ideal of F[x ].

3. The quotient ring F[x ]/(f (x)) is a field.

Unique Factorization Theorem: Each polynomial f (x) ∈ F[x ] of
positive degree is the product of a nonzero element of F and
irreducible monic polynomials of F[x ].
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Eisenstein Criterion

Theorem(Eisenstein Criterion): Let
f (x) = a0 + a1x + · · ·+ anx

n be a polynomial in Z[x ]. Suppose
that for some prime number p, p - an, p | a0, p | a1, · · · , p | an−1
and p2 - a0. Then f (x) is irreducible in Q[x ].

Example: The polynomial f (x) = 3− 45x + 18x2 + 2x5 is
irreducible in Q[x ].
If we take p = 3, then 3 | 3, 3 | −45, 3 | 18, 3 - 2 and 32 - 3. By
Eisenstein Criterion, f (x) is irreducible in Q[x ].

Remark: If the condition of Eisenstein Criterion is not satisfied in
a polynomial, this does not mean that the polynomial is reducible.
For example: f (x) = x2 + 1 in Q[x ] is irreducible and the
condition of Eisenstein Criterion is not satisfied.
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More about irreducibility

Theorem: If r
s is a root of the polynomial

f (x) = a0 + a1x + · · ·+ anx
n in Q[x ] in which gcd(r , s) = 1, then

r | a0 and s | an.

Example: The polynomial f (x) = x4 + 2x3 − 2 has no roots in Q.
Let r

s is a root of f (x) with gcd(r , s) = 1, then by above theorem
r | −2 and s | 1. Then we have four values for r

s , which are 1, -1,
2, -2. But none of them is a root of f (x).
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More about irreducibility

Theorem(Kronecker): If f (x) is an irreducible polynomial in
F[x ], then there is an extension field of F in which f (x) has a
root.
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The Use of GAP

To create, for example, the polynomial ring P = Z7[x ]:
gap> R:= Integers mod 7;
GF (7)
gap>P:= PolynomialRing(R);
GF (7)([ x−1 ])

Suppose we want to factor the polynomial x2 − 2 ∈ Z7[x ].
The command
gap> x:= X(R, ”x”);
x
creates the indeterminate x over the ring R.
gap> f:= x2-2;
x2+Z(7)5

gap> Factors(f);
[x + Z (7), x + Z (7)4]
gap> IsIrreducible(f);
false
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The Use of GAP

gap> R:= Rationals;
Rationals

Suppose we want to factor the polynomial z2 − 2 ∈ Q[x ].
gap> z:= X(R, ”z”);
z
gap> f:= z2-1;
z2-1
gap> Factors(f);
[z − 1, z + 1]
gap> IsIrreducible(f);
false
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Height and Length

Definition: Let f (x) = a0 + a1x + a2x
2 + · · ·+ anx

n ∈ C[x ]. The
height H(f ) is defined to be the maximum of the magnitudes of
its coefficients: H(f ) = max{|ai |}, i = 0, 1, · · · , n.

Definition: Let f (x) = a0 + a1x + a2x
2 + · · ·+ anx

n ∈ C[x ]. The
length L(f ) is similarly defined as the sum of the magnitudes of
the coefficients: L(f ) =

∑n
i=0 |ai |.

Example: Let f (x) = 1 + 2x2 ∈ C[x ]. Then H(f ) = 2 and
L(f ) = 3.
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Mahler Measure

Definition: Let f (x) = a0 + a1x + a2x
2 + · · ·+ anx

n ∈ C[x ]. The
Mahler measure of f (x) =

∑n
k=0 akx

k = an
∏n

k=1(x − αk)
is
M(f ) = |an|

∏n
k=1max{1, |αk |}.

Example: Let f (x) = 1 + 2x2 ∈ C[x ]. Then
f (x) = 2(x − i√

2
)(x + i√

2
). So, M(f ) = 2× 1× 1 = 2.

Remark:( n
b n
2
c
)
H(f ) ≤ M(f ) ≤ H(f )

√
n + 1;

L(f ) ≤ 2nM(f ) ≤ 2nL(f );
H(f ) ≤ L(f ) ≤ nH(f ).
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Polynomials in Graph Theory

Definition: The detour distance D(u, v) between two distinct
vertices u and v in a connected graph Γ is the length of a longest
u − v path in Γ.

Definition: The detour polynomial of Γ is defined by
D(Γ; x) =

∑
{u,v} x

D(u,v).

Example: Ladder.

Example: Connect to group theory. Take S3 as an example and
associate a commuting graph with it
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Thanks

Thanks for your attention
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