Polynomial Rings

Sanhan M. S. Khasraw

Salahaddin University-Erbil 13th March, 2017

Polynomial Rings

Definition: Let R be a commutative ring with 1 . The polynomial ring $R[x]$ in indeterminate x with coefficients from R is the set of all formal sums $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with $n \geq 0$ and $a_{i} \in R$. That is, $R[x]=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} ; n \geq 0 ; a_{i} \in R\right\}$.

Polynomial Rings

Definition: Let R be a commutative ring with 1 . The polynomial ring $R[x]$ in indeterminate x with coefficients from R is the set of all formal sums $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with $n \geq 0$ and $a_{i} \in R$. That is,
$R[x]=\left\{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} ; n \geq 0 ; a_{i} \in R\right\}$.
In order to make a ring out of $R[x]$ we must be able to recognize when two elements in it are equal, we must be able to add and multiply elements of $R[x]$ so that the axioms defining a ring hold true for $R[x]$. This will be our initial goal.

Operations on $R[x]$

Definition: If $f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n}$ are in $R[x]$, then $f(x)=g(x)$ if and only if for every integer $i \geq 0, a_{i}=b_{i}$.

Operations on $R[x]$

Definition: If $f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n}$ are in $R[x]$, then $f(x)=g(x)$ if and only if for every integer $i \geq 0, a_{i}=b_{i}$.

Thus, two polynomials are said to be equal if and only if their corresponding coefficients are equal.

Operations on $R[x]$

Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ are both in $R[x]$, then $f(x)+g(x)=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$ where for each $i, c_{i}=a_{i}+b_{i}$.

Operations on $R[x]$

Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$ are both in $R[x]$, then $f(x)+g(x)=c_{0}+c_{1} x+\cdots+c_{t} x^{t}$ where for each $i, c_{i}=a_{i}+b_{i}$.

In other words, add two polynomials by adding their coefficients and collecting terms. To add $1+x$ and $3-2 x+x^{2}$ we consider $1+x$ as $1+x+0 x^{2}$ and add, according to the recipe given in the definition, to obtain as their sum $4-x+x^{2}$.

Operations on $R[x]$

The most complicated item to define for $R[x]$ is the multiplication.

Operations on $R[x]$

The most complicated item to define for $R[x]$ is the multiplication.
Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$, then

$$
f(x) g(x)=c_{0}+c_{1} x+\cdots+c_{k} x^{k}
$$

where

$$
c_{t}=a_{t} b_{0}+a_{t-1} b_{1}+a_{t-2} b_{2}+\cdots+a_{0} b_{t} .
$$

Operations on $R[x]$

The most complicated item to define for $R[x]$ is the multiplication.
Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$, then

$$
f(x) g(x)=c_{0}+c_{1} x+\cdots+c_{k} x^{k}
$$

where

$$
c_{t}=a_{t} b_{0}+a_{t-1} b_{1}+a_{t-2} b_{2}+\cdots+a_{0} b_{t}
$$

This definition says nothing more than: multiply the two polynomials by multiplying out the symbols formally, use the relation $x^{\alpha} x^{\beta}=x^{\alpha+\beta}$ and collect terms.

Degree of Polynomials

Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq 0$ and $a_{n} \neq 0$, is in $R[x]$, then the degree of $f(x)$, written as $\operatorname{deg} f(x)$, is n.

That is, the degree of $f(x)$ is the largest integer i for which the ith coefficient of $f(x)$ is not 0 .

Degree of Polynomials

Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq 0$ and $a_{n} \neq 0$, is in $R[x]$, then the degree of $f(x)$, written as $\operatorname{deg} f(x)$, is n.

That is, the degree of $f(x)$ is the largest integer i for which the ith coefficient of $f(x)$ is not 0 .

We say a polynomial is constant if its degree is 0 .

Degree of Polynomials

Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq 0$ and $a_{n} \neq 0$, is in $R[x]$, then the degree of $f(x)$, written as $\operatorname{deg} f(x)$, is n.

That is, the degree of $f(x)$ is the largest integer i for which the ith coefficient of $f(x)$ is not 0 .

We say a polynomial is constant if its degree is 0 .
We say a polynomial is monic if $a_{n}=1$.

Degree of Polynomials

Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq 0$ and $a_{n} \neq 0$, is in $R[x]$, then the degree of $f(x)$, written as $\operatorname{deg} f(x)$, is n.

That is, the degree of $f(x)$ is the largest integer i for which the ith coefficient of $f(x)$ is not 0 .

We say a polynomial is constant if its degree is 0 .
We say a polynomial is monic if $a_{n}=1$.
We say a polynomial is linear if $n=1$.

Degree of Polynomials

Definition: If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq 0$ and $a_{n} \neq 0$, is in $R[x]$, then the degree of $f(x)$, written as $\operatorname{deg} f(x)$, is n.

That is, the degree of $f(x)$ is the largest integer i for which the ith coefficient of $f(x)$ is not 0 .

We say a polynomial is constant if its degree is 0 .
We say a polynomial is monic if $a_{n}=1$.
We say a polynomial is linear if $n=1$.
We do not define the degree of the zero polynomial.

Degree of Polynomials

Remark: If $f(x)$ and $g(x)$ are two polynomials over a ring R, then (1) $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{degf}(x), \operatorname{degg}(x)\}$. (2) $\operatorname{deg}(f(x) \cdot g(x)) \leq \operatorname{degf}(x)+\operatorname{degg}(x)$.

Degree of Polynomials

Remark: If $f(x)$ and $g(x)$ are two polynomials over a ring R, then (1) $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{degf}(x), \operatorname{degg}(x)\}$.
(2) $\operatorname{deg}(f(x) \cdot g(x)) \leq \operatorname{deg} f(x)+\operatorname{degg}(x)$.

Example: Let $f(x)=1+3 x+2 x^{5}$ and $g(x)=x+3 x^{2}$ be two polynomials in $Z_{6}[x]$ for which $\operatorname{deg} f(x)=5$ and $\operatorname{degg}(x)=2$.

Then $f(x) \cdot g(x)=x+3 x^{3}+2 x^{6}$ has degree 6 . Thus, $\operatorname{deg}(x)+\operatorname{degg}(x)=7 \neq \operatorname{deg}(f(x) \cdot g(x))=6$.

Degree of Polynomials

Theorem: Let R be an integral domain and $f(x), g(x)$ be two nonzero elements of $R[x]$. Then

1. $\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg} f(x)+\operatorname{degg}(x)$, and
2. either $f(x)+g(x)=0$ or $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{degg}(x)\}$.

Degree of Polynomials

Theorem: Let R be an integral domain and $f(x), g(x)$ be two nonzero elements of $R[x]$. Then

1. $\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg} f(x)+\operatorname{degg}(x)$, and
2. either $f(x)+g(x)=0$ or $\operatorname{deg}(f(x)+g(x)) \leq \max \{\operatorname{deg} f(x), \operatorname{degg}(x)\}$.

Corollary: If the ring R is an integral domain, then so is $R[x]$.

Division Algorithm Theorem

Theorem(Division Algorithm): Let R be a commutative ring with 1 and $f(x), g(x) \neq 0$ be polynomials in $R[x]$, with the leading coefficient of $g(x)$ an invertible element. Then there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x)=q(x) \cdot g(x)+r(x)$, where either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{degg}(x)$.

Division Algorithm Theorem

Theorem(Division Algorithm): Let R be a commutative ring with 1 and $f(x), g(x) \neq 0$ be polynomials in $R[x]$, with the leading coefficient of $g(x)$ an invertible element. Then there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x)=q(x) \cdot g(x)+r(x)$, where either $r(x)=0$ or $\operatorname{degr}(x)<\operatorname{degg}(x)$.

Example: Let $f(x)=x^{4}+4 x^{3}+x^{2}+4 x+1, g(x)=x^{2}+2 x+1$ be polynomials in $Z_{7}[x]$. Then
$f(x)=x^{4}+4 x^{3}+x^{2}+4 x+1=\left(x^{2}+2 x+3\right)\left(x^{2}+2 x+1\right)+(3 x+5)$.

Root of Polynomials

Definition: Let R be a commutative ring with 1 and r be an arbitrary element of R. For each polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $R[x]$, we may define $f(r)=a_{0}+a_{1} r+\cdots+a_{n} r^{n}$.
If $f(r)=0$, we call the element r a root or zero of $f(x)$.

Root of Polynomials

Definition: Let R be a commutative ring with 1 and r be an arbitrary element of R. For each polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $R[x]$, we may define $f(r)=a_{0}+a_{1} r+\cdots+a_{n} r^{n}$.
If $f(r)=0$, we call the element r a root or zero of $\mathrm{f}(\mathrm{x})$.
Example: $\ln Z_{2}[x]$, each of 1 and 0 is root of the polynomial $f(x)=x^{2}+x$.

Factors

Definition: Let R be a commutative ring with 1 . If $f(x)$ and $g(x) \neq 0$ are in $R[x]$, we say that $g(x)$ is a factor of $f(x)$ [or $g(x)$ divides $f(x)]$ if there exists some polynomial $h(x) \in R[x]$ for which $f(x)=h(x) \cdot g(x)$.

Factors

Definition: Let R be a commutative ring with 1 . If $f(x)$ and $g(x) \neq 0$ are in $R[x]$, we say that $g(x)$ is a factor of $f(x)$ [or $g(x)$ divides $f(x)]$ if there exists some polynomial $h(x) \in R[x]$ for which $f(x)=h(x) \cdot g(x)$.

Example: If $f(x) \in \mathbb{Z}[x]$, where $f(x)=x^{2}+2 x-3=(x-1)(x+3)$, then $(x-1)$ is a factor of $f(x)$.

Remainder Theorem

Theorem(Remainder Theorem): Let R be a commutative ring with 1. If $f(x) \in R[x]$ and $a \in R$, then there is a unique polynomial $q(x) \in R[x]$ such that $f(x)=(x-a) q(x)+f(a)$.

Remainder Theorem

Theorem(Remainder Theorem): Let R be a commutative ring with 1. If $f(x) \in R[x]$ and $a \in R$, then there is a unique polynomial $q(x) \in R[x]$ such that $f(x)=(x-a) q(x)+f(a)$.

Corollary (Factorization Theorem): The polynomial $f(x) \in R[x]$ is divisible by $x-a$ if and only if a is a root of $f(x)$.

More about roots

Theorem: Let R be an integral domain and $f(x) \in R[x]$ be a nonzero polynomial of degree n. Then $f(x)$ has at most n distinct roots in R.

More about roots

Theorem: Let R be an integral domain and $f(x) \in R[x]$ be a nonzero polynomial of degree n. Then $f(x)$ has at most n distinct roots in R.

Example: consider the polynomial $x^{p}-x \in Z_{p}[x]$, where p is a prime.
Since the nonzero elements of Z_{p} form a cyclic group under multiplication of order $p-1$, we must have $a^{p-1}=1$ or $a^{p}=a$ for every $0 \neq a \in Z_{p}$.
But the last equation clearly holds when $a=0$, so that every element of Z_{p} is a root of the polynomial $x^{p}-x$.

More Examples

Remark: The theorem is not true if R is not an integral domain.

More Examples

Remark: The theorem is not true if R is not an integral domain.
For example, $R=Z_{2} \times Z_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$. Then R has divisors of zero. Let $f(x)=x^{2}+x \in R[x]$. Then every element in R is a root of $f(x)$.

More Examples

Remark: The theorem is not true if R is not an integral domain.
For example, $R=Z_{2} \times Z_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$. Then R has divisors of zero. Let $f(x)=x^{2}+x \in R[x]$. Then every element in R is a root of $f(x)$.

Example: Let the polynomial $f(x)=x^{2}+1$ be in $H[\mathbb{R}]$. Then i, j, k are roots for $f(x)$ in $H[\mathbb{R}]$.

More Examples

Remark: The theorem is not true if R is not an integral domain.
For example, $R=Z_{2} \times Z_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$. Then R has divisors of zero. Let $f(x)=x^{2}+x \in R[x]$. Then every element in R is a root of $f(x)$.

Example: Let the polynomial $f(x)=x^{2}+1$ be in $H[\mathbb{R}]$. Then i, j, k are roots for $f(x)$ in $H[\mathbb{R}]$.

In fact it has infinite roots in $H[\mathbb{R}]$.

More Theorems

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then $f(x)$ has at least one root in \mathbb{C}.

More Theorems

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then $f(x)$ has at least one root in \mathbb{C}.

Corollary: If $f(x) \in \mathbb{C}[x]$ is a polynomial of degree $n>0$, then $f(x)$ can be expressed in $\mathbb{C}[x]$ as a product of n (not necessarily distinct) linear factors.

More Theorems

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then $f(x)$ has at least one root in \mathbb{C}.

Corollary: If $f(x) \in \mathbb{C}[x]$ is a polynomial of degree $n>0$, then $f(x)$ can be expressed in $\mathbb{C}[x]$ as a product of n (not necessarily distinct) linear factors.

Remark: For any ring $R, R[x]$ is not a field. That is, no element of $R[x]$ which has positive degree can have a multiplicative inverse.

More Theorems

Theorem: Let \mathbb{C} be the field of complex numbers. If $f(x) \in \mathbb{C}[x]$ is a polynomial of positive degree, then $f(x)$ has at least one root in \mathbb{C}.

Corollary: If $f(x) \in \mathbb{C}[x]$ is a polynomial of degree $n>0$, then $f(x)$ can be expressed in $\mathbb{C}[x]$ as a product of n (not necessarily distinct) linear factors.

Remark: For any ring $R, R[x]$ is not a field. That is, no element of $R[x]$ which has positive degree can have a multiplicative inverse.

Suppose $f(x) \in R[x]$ with $\operatorname{deg} f(x)>0$. If $f(x) \cdot g(x)=1$ for some $g(x) \in R[x]$, then
$0=\operatorname{deg} 1=\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg} f(x)+\operatorname{degg}(x) \neq 0$, a contradiction.

Principal Ideal Domain

Theorem: If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a principal ideal domain.

Principal Ideal Domain

Theorem: If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a principal ideal domain.
Corollary: A nontrivial ideal of $\mathbb{F}[x]$ is maximal if and only if it is a prime ideal.

Principal Ideal Domain

Theorem: If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a principal ideal domain.
Corollary: A nontrivial ideal of $\mathbb{F}[x]$ is maximal if and only if it is a prime ideal.

Definition: A nonconstant polynomial $f(x) \in \mathbb{F}[x]$ is said to be irreducible in $\mathbb{F}[x]$ if and only if $f(x)$ cannot be expressed as the product of two polynomials of positive degree. Otherwise, $f(x)$ is reducible in $\mathbb{F}[x]$.

Principal Ideal Domain

Theorem: If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a principal ideal domain.
Corollary: A nontrivial ideal of $\mathbb{F}[x]$ is maximal if and only if it is a prime ideal.

Definition: A nonconstant polynomial $f(x) \in \mathbb{F}[x]$ is said to be irreducible in $\mathbb{F}[x]$ if and only if $f(x)$ cannot be expressed as the product of two polynomials of positive degree. Otherwise, $f(x)$ is reducible in $\mathbb{F}[x]$.

Example: $f(x)=x^{2}+1$ is irreducible in $\mathbb{R}[x]$, but it is reducible in both $\mathbb{C}[x]$ and $Z_{2}[x]$.

Irreducibility

Example: Any linear polynomial $f(x)=a x+b, a \neq 0$, is irreducible in $\mathbb{F}[x]$.

Irreducibility

Example: Any linear polynomial $f(x)=a x+b, a \neq 0$, is irreducible in $\mathbb{F}[x]$.
Since the degree of a product of two nonzero polynomials is the sum of the degrees of the factors, it follows that a representation $a x+b=g(x) \cdot h(x)$ with $0<\operatorname{degg}(x)<1,0<\operatorname{degh}(x)<1$ is impossible. Thus, every reducible polynomial has degree at least 2.

Irreducibility

Example: Any linear polynomial $f(x)=a x+b, a \neq 0$, is irreducible in $\mathbb{F}[x]$.
Since the degree of a product of two nonzero polynomials is the sum of the degrees of the factors, it follows that a representation $a x+b=g(x) \cdot h(x)$ with $0<\operatorname{degg}(x)<1,0<\operatorname{degh}(x)<1$ is impossible. Thus, every reducible polynomial has degree at least 2.

Remark: If $f(x)$ is a polynomial over \mathbb{F} which has a root in \mathbb{F}, then $f(x)$ is reducible in $\mathbb{F}[x]$.

Irreducibility

Example: Any linear polynomial $f(x)=a x+b, a \neq 0$, is irreducible in $\mathbb{F}[x]$.
Since the degree of a product of two nonzero polynomials is the sum of the degrees of the factors, it follows that a representation $a x+b=g(x) \cdot h(x)$ with $0<\operatorname{degg}(x)<1,0<\operatorname{degh}(x)<1$ is impossible. Thus, every reducible polynomial has degree at least 2.

Remark: If $f(x)$ is a polynomial over \mathbb{F} which has a root in \mathbb{F}, then $f(x)$ is reducible in $\mathbb{F}[x]$.

Theorem: Let \mathbb{F} be a field and $f(x) \in \mathbb{F}[x]$ be of degree 2 or 3 . Then $f(x)$ is reducible in $\mathbb{F}[x]$ if and only if $f(x)$ has a root in \mathbb{F}.

Unique Factorization Theorem

Theorem: If \mathbb{F} is a field, the following statements are equivalent:

1. $f(x)$ is an irreducible polynomial in $\mathbb{F}[x]$.
2. The principal ideal $(f(x))$ is a maximal(prime) ideal of $\mathbb{F}[x]$.
3. The quotient ring $\mathbb{F}[x] /(f(x))$ is a field.

Unique Factorization Theorem

Theorem: If \mathbb{F} is a field, the following statements are equivalent: 1. $f(x)$ is an irreducible polynomial in $\mathbb{F}[x]$.
2. The principal ideal $(f(x))$ is a maximal(prime) ideal of $\mathbb{F}[x]$.
3. The quotient ring $\mathbb{F}[x] /(f(x))$ is a field.

Unique Factorization Theorem: Each polynomial $f(x) \in \mathbb{F}[x]$ of positive degree is the product of a nonzero element of \mathbb{F} and irreducible monic polynomials of $\mathbb{F}[x]$.

Eisenstein Criterion

Theorem(Eisenstein Criterion): Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial in $\mathbb{Z}[x]$. Suppose that for some prime number $p, p \nmid a_{n}, p\left|a_{0}, p\right| a_{1}, \cdots, p \mid a_{n-1}$ and $p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Eisenstein Criterion

Theorem(Eisenstein Criterion): Let
$f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial in $\mathbb{Z}[x]$. Suppose that for some prime number $p, p \nmid a_{n}, p\left|a_{0}, p\right| a_{1}, \cdots, p \mid a_{n-1}$ and $p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Example: The polynomial $f(x)=3-45 x+18 x^{2}+2 x^{5}$ is irreducible in $\mathbb{Q}[x]$.
If we take $p=3$, then $3|3,3|-45,3 \mid 18,3 \nmid 2$ and $3^{2} \nmid 3$. By Eisenstein Criterion, $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Eisenstein Criterion

Theorem(Eisenstein Criterion): Let
$f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial in $\mathbb{Z}[x]$. Suppose that for some prime number $p, p \nmid a_{n}, p\left|a_{0}, p\right| a_{1}, \cdots, p \mid a_{n-1}$ and $p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Example: The polynomial $f(x)=3-45 x+18 x^{2}+2 x^{5}$ is irreducible in $\mathbb{Q}[x]$.
If we take $p=3$, then $3|3,3|-45,3 \mid 18,3 \nmid 2$ and $3^{2} \nmid 3$. By Eisenstein Criterion, $f(x)$ is irreducible in $\mathbb{Q}[x]$.

Remark: If the condition of Eisenstein Criterion is not satisfied in a polynomial, this does not mean that the polynomial is reducible. For example: $f(x)=x^{2}+1$ in $\mathbb{Q}[x]$ is irreducible and the condition of Eisenstein Criterion is not satisfied.

More about irreducibility

Theorem: If $\frac{r}{s}$ is a root of the polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $\mathbb{Q}[x]$ in which $\operatorname{gcd}(r, s)=1$, then $r \mid a_{0}$ and $s \mid a_{n}$.

More about irreducibility

Theorem: If $\frac{r}{s}$ is a root of the polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in $\mathbb{Q}[x]$ in which $\operatorname{gcd}(r, s)=1$, then $r \mid a_{0}$ and $s \mid a_{n}$.

Example: The polynomial $f(x)=x^{4}+2 x^{3}-2$ has no roots in \mathbb{Q}. Let $\frac{r}{s}$ is a root of $f(x)$ with $\operatorname{gcd}(r, s)=1$, then by above theorem $r \mid-2$ and $s \mid 1$. Then we have four values for $\frac{r}{s}$, which are $1,-1$, $2,-2$. But none of them is a root of $f(x)$.

More about irreducibility

Theorem(Kronecker): If $f(x)$ is an irreducible polynomial in $\mathbb{F}[x]$, then there is an extension field of \mathbb{F} in which $f(x)$ has a root.

The Use of GAP

To create, for example, the polynomial ring $P=Z_{7}[x]$: gap $>\mathrm{R}:=$ Integers $\bmod 7$; $G F(7)$
gap $>\mathrm{P}:=$ PolynomialRing(R); GF(7)([x-1])

The Use of GAP

To create, for example, the polynomial ring $P=Z_{7}[x]$: gap> R:= Integers mod 7;
$G F(7)$
gap $>P:=$ PolynomialRing(R);
GF(7)([x-1])
Suppose we want to factor the polynomial $x^{2}-2 \in Z_{7}[x]$.
The command gap $>x:=X(R, " x$ " ;
x
creates the indeterminate \times over the ring R.
gap $>f:=x^{2}-2$;
$x^{2}+Z(7)^{5}$
gap $>$ Factors(f);
$\left[x+Z(7), x+Z(7)^{4}\right]$

The Use of GAP

To create, for example, the polynomial ring $P=Z_{7}[x]$: gap> R:= Integers mod 7;
$G F(7)$
gap $>P:=$ PolynomialRing(R); GF(7)([x-1])

Suppose we want to factor the polynomial $x^{2}-2 \in Z_{7}[x]$.
The command gap $>x:=X(R, " x ")$;
x
creates the indeterminate \times over the ring R.
gap $>\mathrm{f}:=\mathrm{x}^{2}-2$;
$x^{2}+Z(7)^{5}$
gap $>$ Factors(f);
$\left[x+Z(7), x+Z(7)^{4}\right]$
gap $>$ Islrreducible(f);
false

The Use of GAP

gap>R:= Rationals;
Rationals

The Use of GAP

gap $>\mathrm{R}:=$ Rationals;
Rationals

Suppose we want to factor the polynomial $z^{2}-2 \in \mathbb{Q}[x]$. gap> z:=X(R, "z");
z
gap $>\mathrm{f}:=\mathrm{z}^{2}-1$;
$z^{2}-1$
gap $>$ Factors(f);
$[z-1, z+1]$
gap> IsIrreducible(f);
false

Height and Length

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The height $H(f)$ is defined to be the maximum of the magnitudes of its coefficients: $H(f)=\max \left\{\left|a_{i}\right|\right\}, i=0,1, \cdots, n$.

Height and Length

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The height $H(f)$ is defined to be the maximum of the magnitudes of its coefficients: $H(f)=\max \left\{\left|a_{i}\right|\right\}, i=0,1, \cdots, n$.

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The length $L(f)$ is similarly defined as the sum of the magnitudes of the coefficients: $L(f)=\sum_{i=0}^{n}\left|a_{i}\right|$.

Height and Length

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The height $H(f)$ is defined to be the maximum of the magnitudes of its coefficients: $H(f)=\max \left\{\left|a_{i}\right|\right\}, i=0,1, \cdots, n$.

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The length $L(f)$ is similarly defined as the sum of the magnitudes of the coefficients: $L(f)=\sum_{i=0}^{n}\left|a_{i}\right|$.

Example: Let $f(x)=1+2 x^{2} \in \mathbb{C}[x]$. Then $H(f)=2$ and $L(f)=3$.

Mahler Measure

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The Mahler measure of $f(x)=\sum_{k=0}^{n} a_{k} x^{k}=a_{n} \prod_{k=1}^{n}\left(x-\alpha_{k}\right)$ is
$M(f)=\left|a_{n}\right| \prod_{k=1}^{n} \max \left\{1,\left|\alpha_{k}\right|\right\}$.

Mahler Measure

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The Mahler measure of $f(x)=\sum_{k=0}^{n} a_{k} x^{k}=a_{n} \prod_{k=1}^{n}\left(x-\alpha_{k}\right)$
is
$M(f)=\left|a_{n}\right| \prod_{k=1}^{n} \max \left\{1,\left|\alpha_{k}\right|\right\}$.
Example: Let $f(x)=1+2 x^{2} \in \mathbb{C}[x]$. Then $f(x)=2\left(x-\frac{i}{\sqrt{2}}\right)\left(x+\frac{i}{\sqrt{2}}\right)$. So, $M(f)=2 \times 1 \times 1=2$.

Mahler Measure

Definition: Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \in \mathbb{C}[x]$. The Mahler measure of $f(x)=\sum_{k=0}^{n} a_{k} x^{k}=a_{n} \prod_{k=1}^{n}\left(x-\alpha_{k}\right)$
is
$M(f)=\left|a_{n}\right| \prod_{k=1}^{n} \max \left\{1,\left|\alpha_{k}\right|\right\}$.
Example: Let $f(x)=1+2 x^{2} \in \mathbb{C}[x]$. Then $f(x)=2\left(x-\frac{i}{\sqrt{2}}\right)\left(x+\frac{i}{\sqrt{2}}\right)$. So, $M(f)=2 \times 1 \times 1=2$.

Remark:
$\left(\begin{array}{c}\left.\begin{array}{c}n \\ \left\lfloor\frac{n}{2}\right\rfloor\end{array}\right)\end{array}\right) H(f) \leq M(f) \leq H(f) \sqrt{n+1}$;
$L(f) \leq 2^{n} M(f) \leq 2^{n} L(f)$;
$H(f) \leq L(f) \leq n H(f)$.

Polynomials in Graph Theory

Definition: The detour distance $D(u, v)$ between two distinct vertices u and v in a connected graph Γ is the length of a longest $u-v$ path in Γ.

Polynomials in Graph Theory

Definition: The detour distance $D(u, v)$ between two distinct vertices u and v in a connected graph Γ is the length of a longest $u-v$ path in Γ.

Definition: The detour polynomial of Γ is defined by $D(\Gamma ; x)=\sum_{\{u, v\}} x^{D(u, v)}$.

Polynomials in Graph Theory

Definition: The detour distance $D(u, v)$ between two distinct vertices u and v in a connected graph Γ is the length of a longest $u-v$ path in Γ.

Definition: The detour polynomial of Γ is defined by $D(\Gamma ; x)=\sum_{\{u, v\}} x^{D(u, v)}$.

Example: Ladder.

Polynomials in Graph Theory

Definition: The detour distance $D(u, v)$ between two distinct vertices u and v in a connected graph Γ is the length of a longest $u-v$ path in Γ.

Definition: The detour polynomial of Γ is defined by $D(\Gamma ; x)=\sum_{\{u, v\}} x^{D(u, v)}$.

Example: Ladder.
Example: Connect to group theory. Take S_{3} as an example and associate a commuting graph with it

Thanks

Thanks for your attention

