Chapter Four

Solving Systems of Non-linear Equations

In this chapter, we consider the problem of finding roots of simultaneous nonlinear equations. For simplicity we shall consider only the case of two equations in two unknowns.

$$
\left.\begin{array}{l}
f(x, y)=0 \tag{1}\\
g(x, y)=0
\end{array}\right\} .
$$

We shall study three numerical methods to solve this type of systems:

(i) Fixed-point iteration (for systems):

As a first step in applying fixed-point iteration, we rewrite these equations in the equivalent form

$$
\left.\begin{array}{rl}
x & =F(x, y) \tag{2}\\
y & =G(x, y)
\end{array}\right\}
$$

So that any solution of (2) is a solution of (1), and conversely. Let $\{\lambda, \mu\}$ be a solution of (1), i.e. $\left.\begin{array}{r}f(\lambda, \mu)=0 \\ g(\lambda, \mu)=0\end{array}\right\}$. Let $\left\{x_{0}, y_{0}\right\}$ be an approximation to $\{\lambda, \mu\}$. Generate successive approximations from the recursion

$$
\left.\begin{array}{l}
x_{i+1}=F\left(x_{i}, y_{i}\right) \tag{3}\\
y_{i+1}=G\left(x_{i}, y_{i}\right)
\end{array}\right\}, i=0,1,2, \ldots
$$

Stop iteration if $\left|\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}\right|<\varepsilon$ and $\left|\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right|<\varepsilon$ for any i.
It is shown in analysis this iteration will converge under the following (but not necessary) conditions:
a. F and G and their partial derivatives are continuous in a neighborhood \mathfrak{R} of the roots $\{\lambda, \mu\}$, where \mathfrak{R} consists of all $\{x, y\}$ with $|x-\lambda| \leq \varepsilon,|y-\mu| \leq \varepsilon$, for some positive ε.
b. The following inequalities are satisfied $\left\{\begin{array}{l}\left|F_{x}\right|+\left|G_{x}\right| \leq K \\ \left|F_{y}\right|+\left|G_{y}\right| \leq K\end{array}\right\}$ for all points $\{x, y\}$ in \mathfrak{R} and some $\mathrm{K}<1$.
c. The initial approximations $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$ is chosen in \mathfrak{R}.

Note:

When this iteration does converge it converges linearly.

To proof (b):

$$
\begin{aligned}
& x_{1}=F\left(x_{0}, y_{0}\right) \quad \text { and } \begin{array}{c}
\lambda=F(\lambda, \mu) \\
y_{1}=G\left(x_{0}, y_{0}\right)
\end{array} . \\
& x_{1}-\lambda=F(\lambda, \mu) . \\
& y_{1}-\mu=G\left(x_{0}, y_{0}\right)-F(\lambda, \mu)
\end{aligned} .
$$

By suing Taylor series expansion about λ and μ we get

$$
\begin{aligned}
& \mathrm{F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=\mathrm{F}(\lambda, \mu)+\left(\mathrm{x}_{0}-\lambda\right)\left(\mathrm{F}_{\mathrm{x}}\right)_{\left(\mathrm{x}_{0}, y_{0}\right)}+\left(\mathrm{y}_{0}-\mu\right)\left(\mathrm{F}_{\mathrm{y}}\right)_{\left(\mathrm{x}_{0}, y_{0}\right)}+\cdots \\
& G\left(x_{0}, y_{0}\right)=G(\lambda, \mu)+\left(x_{0}-\lambda\right)\left(G_{x}\right)_{\left(x_{0}, y_{0}\right)}+\left(y_{0}-\mu\right)\left(G_{y}\right)_{\left(x_{0}, y_{0}\right)}+\cdots \\
& \text { Let } K=\max \left\{\left.\left.\right|_{F_{x}}\right|_{\left(x_{0}, y_{0}\right)}+\left|G_{x}\right|_{\left(x_{0}, y_{0}\right)},\left|F_{y_{y}}\right|_{\left(x_{0}, y_{0}\right)}+\left|G_{y}\right|_{\left(x_{0}, y_{0}\right)}\right\} \\
& \therefore \quad\left|\mathrm{x}_{1}-\lambda\right|+\left|\mathrm{y}_{1}-\mu\right| \leq\left|\mathrm{x}_{0}-\lambda\right|\left\{\left.\mathrm{F}_{\mathrm{x}}\right|_{\left(\mathrm{x}_{0}, y_{0}\right)}+\left|\mathrm{G}_{\mathrm{x}}\right|_{\left(\mathrm{x}_{0}, y_{0}\right)}\right\}+\left|y_{0}-\mu\right|\left\{\left|\mathrm{F}_{\mathrm{y}}\right|_{\left(\mathrm{x}_{0}, y_{0}\right)}+\left|\mathrm{G}_{\mathrm{y}}\right|_{\left(\mathrm{x}_{0}, y_{0}\right)}\right\} \\
& \leq K\left\{\left|\mathrm{x}_{0}-\lambda\right|+\left|\mathrm{y}_{0}-\mu\right|\right\}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left|\mathrm{x}_{2}-\lambda\right|+\left|\mathrm{y}_{2}-\mu\right| \leq \mathrm{K}\left\{\left|\mathrm{x}_{1}-\lambda\right|+\left|\mathrm{y}_{1}-\mu\right|\right\} \leq \mathrm{K}^{2}\left\{\left|\mathrm{x}_{0}-\lambda\right|+\left|\mathrm{y}_{0}-\mu\right|\right\} \\
& \vdots \\
& \left|\mathrm{x}_{\mathrm{n}}-\lambda\right|+\left|\mathrm{y}_{\mathrm{n}}-\mu\right| \leq \mathrm{K}^{\mathrm{n}}\left\{\left|\mathrm{x}_{0}-\lambda\right|+\left|\mathrm{y}_{0}-\mu\right|\right\}
\end{aligned}
$$

The value of $\left|x_{0}-\lambda\right|$ and $\left|y_{0}-\mu\right|$ must approach to zero and this happen, when $K<1$ $\left\{\mathrm{K}^{\mathrm{n}} \rightarrow 0\right.$ an $\left.\mathrm{n} \rightarrow \infty\right\}$. Hence the condition $\mathrm{K}<1$ is sufficient to force the convergence.

Example 1:

Solve the following system:

$$
\begin{aligned}
& 0.1 x^{2}+0.1 y^{2}-x+0.8=0 \\
& 0.1 x+0.1 x^{2}-y+0.8=0 \text { where } x_{0}=y_{0}=\frac{1}{5}
\end{aligned}
$$

The exact solution of this system is $\mathrm{x}=\mathrm{y}=1$.

Solution:

Rewrite above system as follows:

$$
\begin{aligned}
& \mathrm{x}=0.1 \mathrm{x}^{2}+0.1 \mathrm{y}^{2}+0.8=\mathrm{F}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{y}=0.1 \mathrm{x}+0.1 \mathrm{xy}^{2}+0.8=\mathrm{G}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

$$
\left|\mathrm{F}_{\mathrm{x}}\right|_{(0.5,0.5)}+\left|\mathrm{G}_{\mathrm{x}}\right|_{(0.5,0.5)}=0.144<1
$$

We see that $\begin{aligned} & \mid F_{(0.5, ~ 0.5)} \\ & \left|F_{y}\right|_{(0.5,0.5)}\end{aligned}+\left|G_{y}\right|_{(0.5,0.5)}=0.48<1$, hence the iteration converge. Applying iteration form (3) we obtain the successive approximations in this table

i	x_{i}	y_{i}
0	0.5	0.5
1	0.85	0.8625
2	0.94664	0.94823
3	0.97953	0.97978
4	0.99182	0.99196

(ii) Newton-Raphson method:

To adapt Newton-Raphson method to simultaneous equations, we proceed as follows: Let $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$ be an approximation to the solution $\{\lambda, \mu\}$ of (1). Assuming that f and g are sufficiently differentiable, expand $f(x, y), g(x, y)$ about $\left\{\mathrm{x}_{0}, \mathrm{y}_{\mathrm{o}}\right\}$ using Taylor series for functions of two variables:

$$
\begin{aligned}
& f(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\ldots \\
& g(x, y)=g\left(x_{0}, y_{0}\right)+g_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+g_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\ldots
\end{aligned}
$$

Assuming that $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$ sufficiently closed to $\{\lambda, \mu\}$ so that higher order terms can be neglected, we equate the expansion through linear terms to zero. This gives us the system

$$
\left.\begin{array}{l}
\mathrm{f}_{\mathrm{x}}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{f}_{\mathrm{y}}\left(\mathrm{y}-\mathrm{y}_{\mathrm{o}}\right) \approx-\mathrm{f} \tag{*}\\
\mathrm{~g}_{\mathrm{x}}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{g}_{\mathrm{y}}\left(\mathrm{y}-\mathrm{y}_{\mathrm{o}}\right) \approx-\mathrm{g}
\end{array}\right\} .
$$

where it is understood that all functions and derivatives in (*) are to be evaluated at $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$. We might then expect that the solution $\left\{\mathrm{x}_{1}, \mathrm{y}_{1}\right\}$ of $\left({ }^{*}\right)$ will be closer to the solution $\{\lambda, \mu\}$ than $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$. The solution of $\left(^{*}\right)$ by Cramer's rule yields

$$
\left|x_{1}-x_{o}\right|=\frac{\left|\begin{array}{cc}
-f & f_{y} \\
-g^{\prime} & g_{y}
\end{array}\right|}{\left|\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right|}=\left[\frac{-f_{y}+d f_{y}}{J(f, g)}\right]_{\left(x_{0}, y_{0}\right)} ; \quad\left|y_{1}-y_{o}\right|=\frac{\left|\begin{array}{cc}
f_{x} & -f \\
g_{x} & -g
\end{array}\right|}{\left|\begin{array}{cc}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right|}=\left[\frac{-f_{x}+f_{x}}{J(f, g)}\right]_{\left(x_{0}, y_{0}\right)}
$$

Provided that $J(f, g)=f_{x} g_{y}-g_{x} f_{y} \neq 0$ at $\left\{x_{0}, y_{0}\right\}$. The function $J(f, g)$ is called the Jacobian of the functions f and g . The solution $\left\{\mathrm{x}_{1}, \mathrm{y}_{1}\right\}$ of this system now provides a
new approximation to $\{\lambda, \mu\}$. Repetition of this process leads to Newton-Raphson method for systems

$$
x_{i+1}=x_{i}-\left\lceil\frac{\left\lceil\mathrm{fg}_{y}-\mathrm{gf}_{y}\right\rceil}{J(f, g)}\right]_{\left(x_{i}, y_{i}\right)} ; \quad y_{i+1}=y_{i}-\left[\frac{\left\lceil f_{x}-f_{x}\right.}{J(f, g)}\right]_{\left(x_{i}, y_{i}\right)} ; i=0,1, \ldots
$$

Where $J(f, g)=f_{x} g_{y}-g_{x} f_{y}$ and where all functions involved are to be evaluated at $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right\}$. Stop iteration if $\left|\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}\right|<\varepsilon$ and $\left|\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right|<\varepsilon$ for any i .

When this iteration converges, it converges quadratically.

A set of conditions sufficient to ensure convergence is the following:

1. f, g and all their derivatives through second order are continuous and bounded in a region \mathfrak{R} containing $\{\lambda, \mu\}$.
2. The Jacobian $\mathrm{J}(\mathrm{f}, \mathrm{g})$ dose not vanish in \mathfrak{R}.
3. The initial approximation $\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$ is chosen sufficiently close to the root $\{\lambda, \mu\}$.

Example 2:

Solve the system

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& x^{2}-y^{2}=-0.5 \text { at }\left\{x_{0}, y_{0}\right\}=\{0.1,0.3\} \text { also at }\left\{x_{0}, y_{o}\right\}=\{0.5,0.5\} .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \text { Let } \quad f(x, y)=x^{2}+y^{2}-1=0 \\
& g(x, y)=x^{2}-y^{2}+0.5=0 \\
& \therefore \quad \mathrm{f}_{\mathrm{x}}=2 \mathrm{x}, \mathrm{f}_{\mathrm{y}}=2 \mathrm{y}, \mathrm{~g}_{\mathrm{x}}=2 \mathrm{x}, \mathrm{~g}_{\mathrm{y}}=-2 \mathrm{y} \\
& \text { at }\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}=\{0.1,0.3\} \Rightarrow \mathrm{f}(0.1,0.3)=-0.9, \quad \mathrm{f}_{\mathrm{x}}=0.2, \mathrm{f}_{\mathrm{y}}=0.6, \mathrm{~g}(0.1,0.3)=0.42, \quad \mathrm{~g}_{\mathrm{x}}=0.2 \text {, } \\
& \mathrm{g}_{\mathrm{y}}=-0.6 \\
& x_{1}=x_{0}-\left[\frac{\mathrm{fg}_{y}-\mathrm{gf}_{y}}{\mathrm{~J}(\mathrm{f}, \mathrm{~g})}\right]_{\left(x_{0}, y_{0}\right)}=0.1-\left[\frac{(-0.9 \times-0.6)-(0.42 \times 0.6)}{(0.2 \times-0.6)-(0.6 \times 0.2)}\right]=0.1-\frac{0.288}{-0.24}=1.3 \\
& y_{1}=y_{0}-\left[\frac{\mathrm{gf}_{x}-\mathrm{fg}_{x}}{\mathrm{~J}(\mathrm{f}, \mathrm{~g})}\right]_{\left(x_{0}, y_{0}\right)}=0.3-\left[\frac{(0.42 \times 0.2)-(-0.9 \times 0.2)}{(0.2 \times-0.6)-(0.6 \times 0.2)}\right]=0.3-\frac{0.264}{-0.24}=1.4
\end{aligned}
$$

Also

$$
\begin{aligned}
& x_{2}=x_{1}-\left[\frac{\left\lceil\mathrm{fg}_{y}-\mathrm{gf}_{y}\right.}{J(f, g)}\right]_{\left(\mathrm{x}_{1}, y_{1}\right)}=1.3-\left[\frac{\mathrm{fg}_{y}-\mathrm{gf}_{y}}{\mathrm{~J}(\mathrm{f}, \mathrm{~g})}\right]_{(1.3,1.4)}=? \\
& y_{2}=y_{1}-\left[\frac{\mathrm{gf}_{\mathrm{x}}-\mathrm{fg}_{\mathrm{x}}}{\mathrm{~J}(\mathrm{f}, \mathrm{~g})}\right]_{\left(\mathrm{x}_{1}, y_{1}\right)}=1.4-\left[\frac{\mathrm{gf}_{\mathrm{x}}-\mathrm{fg}_{\mathrm{x}}}{\mathrm{~J}(\mathrm{f}, \mathrm{~g})}\right]_{(1.3,1,4)}=?
\end{aligned}
$$

(iii) Modified Newton-Raphson method:

Newton-Raphson method is not very easy in general for n simultaneous equations in n unknowns. But in Modified Newton-Raphson method we sue the idea of Newton-Raphson method for single variable as follows:

For nonlinear system $\left\{\begin{array}{l}f(x, y)=0 \\ g(x, y)=0\end{array}\right.$

$$
x_{i+1}=x_{i}-\left[\frac{f}{f_{x}}\right]_{\left(x_{i}, y_{i}\right)} ; \quad y_{i+1}=y_{i}-\left\lfloor\frac{g}{g_{y}}\right\rfloor_{\left(x_{i+1}, y_{i}\right)} \quad ; i=0,1, \ldots
$$

Stop iteration if $\left|\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}\right|<\varepsilon$ and $\left|\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right|<\varepsilon$ for any i.
Also for nonlinear system $\left\{\begin{array}{l}f(x, y, z)=0 \\ g(x, y, z)=0 \\ h(x, y, z)=0\end{array}\right.$

$$
x_{i+1}=x_{i}-\left\lceil\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{x}}}\right]_{\left(x_{1}, y_{i}, z_{i}\right)} ; \quad y_{i+1}=y_{i}-\left\lceil\frac{\mathrm{g}}{\mathrm{~g}_{\mathrm{y}}}\right\rfloor_{\left(\mathrm{x}_{\mathrm{i}+1}, y_{i}, z_{i}\right)} ; \quad z_{i+1}=z_{i}-\left\lceil\frac{\mathrm{h}}{\mathrm{~h}_{\mathrm{z}}}\right]_{\left(x_{i+1}, y_{i+1}, z_{i}\right)} ;
$$

For $\mathrm{i}=0,1, \ldots$
Stop iteration if $\left|\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}\right|<\varepsilon,\left|\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right|<\varepsilon$ and $\left|\mathrm{z}_{\mathrm{i}+1}-\mathrm{z}_{\mathrm{i}}\right|<\varepsilon$ for any i.

