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Numerical Differentiation
1. Differentiation of Continuous Functions

The derivative of a function at x is defined as

f(x) = lim f(x+ Ax)- f(x)l

Ax—0 AX

To be able to find a derivative numerically, one could make ax finite to give,

f(x+Ax)- f(x)
AX '

f’(X) =

Knowing the value of x at which you want to find the derivative of f(x), we choose a value of ax
to find the value of f'(x). To estimate the value of f'(x), three such approximations are suggested

as follows.
2.1 Forward Difference Approximation of the First Derivative

From differential calculus, we know

f(x) = fim f(x+ Ax)- f(x)l

Ax—> 0 AX
For a finite Ax,

f(x+ Ax)- f(x)
AX '

f'(X)z

The above is the forward divided difference approximation of the first derivative. It is called forward

because you are taking a point ahead of x. To find the value of f'(x) at x = x,, we may choose

another point ax ahead as x = x,_,. This gives

1

f1(x,) = f(x,,)- f(x,) _ f(x,,)- f(xi),

AX X . = X

i+1 i

where Ax = x,,, - x,.

1 i

Example 7.1: The velocity of a rocket is given by

[ 14x10°
v (t) = 2000 Iw

:
- ~9.8t, 0<t <30,
14 x 10 * ~ 2100 tJ

where v is givenin m/s and t is given in seconds. Att=16s,
a) use the forward difference approximation of the first derivative of v(t) to calculate the acceleration.
Use a step size of At = 2s.

b) find the exact value of the acceleration of the rocket.

c) calculate the absolute relative true error for part (b).
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Solution:
(@) a(t,) = M t,=16,At=2, t, =t +At=16+2=18.
At
a(16)~ (18)-v(16)
2
[ 14 x10*

v (18 ) = 2000 In{ }— 9.8(18 ) = 453 .02 m/s ,

14 x10* - 2100 (18)

[ 14 x 10 * 1
v (16 )= 2000 In | |
| 14 x10 " - 2100 (16 ) |

-9.8(16 ) =392 .07 m/s .

Hence

18)-v(16) 453 .02 — 392 .07
a(lG)zV( )=l )= =30.474 ms °
2 2

(b) The exact value of a(16 ) can be calculated by differentiating

[ 14x10° ] d
v (t) = 2000 In : _9.8t as a(t)= —[(t)].
|\14 x 10~ — 2100 tJ dt

Knowing that

d [In(t)]—— and d 1] —i.
dt t dtt J t?

14 x10“ - 2100 t) d 14 x10*
a(t) = 2000 — -9.8

14 x10* dt | 14 x 10 — 2100 t

[14 x 10 * — 2100 t

(- [ 14 10" )ZJ(—ZIOO )- 9.8

14 x10° (14 x10 * - 2100 t
— 4040 - 29 .4t
~ 200 +3t
— 4040 - 29 .4(16
a(16 ) = ( )=29.674 ms °
- 200 +3(16)

(c) The absolute relative true error is

|True Value — Approximat e Value | |29 .674 — 30 .474 |
le.|= x100 =
| | | 29 .674

x 100 = 2.6967 % .
True Value

2.2 Backward Difference Approximation of the First Derivative

We know f’(x) = lim flx+ax)- f(x).
Ax—>0 AX

For a finite Ax,
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f(x+Aax)- f(x)
AX '

f'(X)z

If ax is chosen as a negative number,

£(x) ~ f(x+AAxX)— f(x) f(x)_;ix_m).

This is a backward difference approximation as you are taking a point backward from x . To find the

value of f'(x) at x = x,, we may choose another point ax behind as x = x,

f'(Xi)z f(Xi);Xf (Xi71) _ f(X)I(): ):(Xil) ’

. This gives

1

1

where Ax = x, - x,_

2.3 Forward Difference Approximation from Taylor Series

Taylor’s theorem says that if you know the value of a function f(x) at a point x, and all its

derivatives at that point, provided the derivatives are continuous between x, and x, ,, then

i+17

1 i

)= 1) e oy

£ (X,): (Xi+1)7f(xi)_ f (X')(AX)+
AX 2!

f'(xi):MJro(Ax).

AX
The o(ax) term shows that the error in the approximation is of the order of ax .
Can you now derive from the Taylor series the formula for the backward divided difference
approximation of the first derivative?

As you can see, both forward and backward divided difference approximations of the first
derivative are accurate on the order of o(ax). Can we get better approximations? Yes, another
method to approximate the first derivative is called the central difference approximation of the first
derivative.

From the Taylor series

F(x) = F(x )+ f(x)ax+ Jax) (7.1)

and
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F(x )= F(x)= f/(x )ax+ f";xi)(Ax)z - ”:'Xi)(Ax)s . (7.2)
Subtracting Equation (7.2) from Equation (7.1)
)= 1= Eean) s 2
f'(x,)= X)) - fW(Xi)(Ax)z F .
2AX 3!

_ f(Xi+l)7 f(xi—1)+ X 2
= . o(ax)",

hence showing that we have obtained a more accurate formula as the error is of the

order of o (ax)”.

Example 7.3: The velocity of a rocket is given by

[ 14x10°
v (t) = 2000 In -
{14 x10 * — 2100 IJ

-9.8t,0<t<30.

(a) Use the central difference approximation of the first derivative of v (t) to calculate the acceleration

att=16 s. Use astepsize of at=2s.

(b) Find the absolute relative true error for part (a).

v (ti+1)_ V(ti—l)

Solution: a(t, )~ —*——22 =16, At=2, t,,=t +At=16+2=18,
2At

t,,=t, —At=16-2=14,

216 )~ v(18)-v(14) _ v(18 ) - v(14)
2(2) 4

14 x10"*
14 x 10 * - 2100

v (18 ) = 2000 Inr 1— 9.8(18 ) = 453 .02 m/s ,
L (18)J

[ 14 x10* ]
v(14) = 2000 In J ~9.8(14) =334 .24 m/s .

14 x10* - 2100 (14 )

Hence

v(18)-v(14) 453 .02 - 334 .24
4 4

a(16 )~ =29.694 m/s ’.

(b) The exact value of the acceleration at t =16 s from Example 7.1 is

a(16 )= 29 .674 ms *.
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The absolute relative true error for the answer in part (a) is

29 .674 - 29 .694 |
x100 = 0.069157 % .
29 .674 |

-]

The results from the three difference approximations are given in Table 7.1.

Table 7.1 Summary of a(16 ) using different difference approximations.

Type of difference | a(16)
|€t|%
approximation (s *)
Forward 30.475 | 2.6967
Backward 28.915 | 2.5584
Central 29.695 | 0.069157

Clearly, the central difference scheme is giving more accurate results because the order of
accuracy is proportional to the square of the step size. In real life, one would not know the exact
value of the derivative — so how would one know how accurately they have found the value of the
derivative? A simple way would be to start with a step size and keep on halving the step size until the
absolute relative approximate error is within a pre-specified tolerance.

Take the example of finding v'(t) for

14 x 10" 1
14 x 10 * - 2100 tJ

v (t) = 2000 In{ - 9.8t,

at t = 16 using the backward difference scheme. Given in Table 7.2 are the values obtained using the
backward difference approximation method and the corresponding absolute relative approximate

errors.

Table 7.2 First derivative approximations and relative errors for different at values of backward

difference scheme.

At v'(t) e, |

2 28.915

1 29.289 1.2792
0.5 29.480 0.64787
0.25 29.577 0.32604
0.125 29.625 0.16355
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From the above table, one can see that the absolute relative approximate error decreases as the
step size is reduced. At at =0.125 , the absolute relative approximate error is 0.16355%, meaning
that at least 2 significant digits are correct in the answer.

3 Differentiation of Discrete Functions

If we are given the set of distinct points (x,,y,), i =0,1,2,.., n, determine the interpolation
polynomial passing through these points. We then differentiate this polynomial to obtain p‘” (x), j=1,
2, ... whose values for any given x taken as an approximation to f ‘"’ (x) . Construct a polynomial
p, (x) which is best approximate polynomial to f(x) by any methods given in interpolation.

Note 7.1:

1) For unequally space points we must use Lagrange interpolation polynomial, divided difference
interpolation formula.

2) For equally space points, we able to use all available methods in interpolation.

3) If we find p_(x) by Lagrange interpolation polynomial, divided difference interpolation formula
or spline function, differentiate p, (x) with respect to x directly.

4) If we find p,_ (x) by NFDIF, NBDIF, we differentiate p_(x) with respect to x as follows.

df (x) _ dp (x) dp (x)ds 1dp, (x)
dx  dx ds dx h ds
1d s(s-1 s(s-1)(s-2
=Y, tSAy, + ( )Azyo+¢A3yo+m
h ds 2! 3!
1 1, s’ 1, |
_EiAyo Jr(S—;)A y0+(7—5+;)A Yo+t
d2f(x) d’p, () dl1( 1, 5’ 1, 11
= s Ty, + (5= DTy, + (m s ATy e |
dx dx dx | h 2 2 3
L ]
d 1, s’ 1, 11 ds
——‘—<Ay0+(5——)A y0+(——3+—)A yo+'“H_
dsLh 2 2 3 de
1
=h—2{A2yo+(s—1)A3yo+m}.
In general
d’f(x d’ X 14’ X .
Co 47p,00 1 dP.0) 5yy
dx '’ dx h'  ds'
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d'f(x) d'p,(x)
dx dx '

Similarly, we obtain for Newton backward difference interpolation and Bessel's

interpolation formula.
Note 7.2: If x=x; (interpolation point)=s=0.

Example 7.6: Find an approximate value to f’(0.7) where f(x)=sin( x) and x, =0.4, x, = 0.6,

x, =08, x,=1.

2 3

Solution:
X 0.4 0.6 0.8 1
f (x) | 0.389418 | 0.564642 | 0.717356 | 0.841471
By using LIP,
Xx,=04,x =06,x,=0.38,x,=1,y, =0389418, y, =0.564642,

0

y, = 0.717356, y, = 0.841471.

b, (x) - (X = X)X = X, ) (X = X,) g+ (X = X, )(X = %,)(x = X;) y+
(XO_Xl)(XO_Xz)(Xo_Xa) (X1_Xo)(X1_X2)(X1_X3)

(X = X )X =X )X =X,) + (X = X X =X, Ux=X,)

(Xz_xo)(xz - Xl)( Xy~ Xa) ‘ (X3—X0)(X3 - X1)(X3 - Xz)

3

=_0.12683772 x’ —0.05307353 x° +1.02559085 x — 0.00420862
Hence
= p.(x)=-0.38051316 x° — 0.10614706  x + 1.02550085
= f'(0.7) = p.(0.7) = 0.7648346
Exact value=c0s(0.7)=0.76484219= error=0.00000573.
Example 7.7: Find an approximate value to f'(2.31) and f'(1) by using Newton forward difference
interpolation formula where f(x) = x* +2 and x =0, 1, 2, 3, 4, 5.

Solution:

X f(x) A2 | A% | A

A
1

Y
R AN

~ :

6
2
18
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37
4 66
61
5 127
1fx=2.31 h=lo s Yo 23172 4
h 1
P, (X) =y, +sAy, + s(5-1) Azyo + s(5-1(s-2) Asyo.
21 3!
Hence
1 1, s’ 1, ]
pg(x)=7<Ayg (S_E)A y0+(7_s+7)A y0>
and

(0.31

f'(2.31) = pl(2.31) =19 + (0.3L - 0.5)(18 ) + (

el e

24

2

1
~0.31 + —)(6) =16.008 .
3

To find the exact value of f '(x ) differentiate f (x ) directly with respectto x , we get

f'(x)=3x"= f'(2.31) =3(2.31)" =16 .0083

(exactvalu e).

Error=exact value-approximate value=16.0083-16.008=0.0003.

1fx=1 h=lo s -~ _ 171 _
h 1

s(s-1
( )A2y0+
21 3!

s(s-1)(s-2) ,

0
' 1 1, 1,
p3(X) = AyO -—A yo +—A yo
h 2 3

1 1
L= pi)=T7->(12)+=(6) =3
2 3

f'(x)=3x"= f'(1) =3(1)° =3 (exactvalu e)

Error=exact value-approximate value=3-3=0.

1 1, ,
Ay, =py(x) = —{Ay +(s-2)A Ty + (—=-s+)Ay, }
h 2 2

Theorem 7.1: Let f(x) is continuously differentiable (n+1) times on [a,b], then

f (n+l)(§) n

P = pr(x))=—] (x, - x),J=0,1,...,n.

(n+1)! 75

i=j
Proof: From errors in interpolation, we have

f(n+1)(§) n
f(x) - - —= -x.).
(x) - p,(x) (n+ 1) ]i:[o(x X;)
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(n+1)

Let g(x) = ﬂand w(x) = H (x=x, )=t (x)=p, (x)=g(x)w(x).
(n+1)! i=0
SO0 = LX) = g OOW (X)) + g W (X) = F (X))~ pL(x,) = g(x)W(x,)+ g'(x,)W(x,), but

w(x;)=0, for j =012 .., n.

LG = P (X)) = g (xW(x,)

W’(xj)=H (x; = x,)

i=]

- , GO
..f(Xj)—pn(Xj)zmli:[o (X].—Xi).

(]
We can use forward difference for discrete functions as follows:

We know

f/(x) = f(x+ Ax)- f(x).

Ax— 0 AX

For a finite Ax,

F/(x) ~ f(x+ Ax)- f(x).

AX

f(x)

v

X X + AX X

Figure 7.3. Graphical representation of forward difference approximation of first derivative.

So given n +1 data points (x,, vy, ) (x,,v,).(x,,y,).....(x,,y,), the value of f'(x) for x, < x<x,,,,
i=0,.n-1,Isgiven by

f(x,.,)- f(x,)

Xisg = X%

f'(xi)z
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Example 7.8: The upward velocity of a rocket is given as a function of time in Table 7.3.

Table 7.3 Velocity as a function of time.

t(s) v(t) (m/s)
0 0
10 227.04
15 362.78
20 517.35
22.5 602.97
30 901.67

Using forward divided difference, find the acceleration of the rocket at t = 16 s.
Solution: To find the acceleration at t = 16 s, we need to choose the two values of velocity closest to

t =16 s, thatalso bracket t =16 s to evaluate it. The two pointsare t =15 s and t = 20 s

v(t,,)-vI(t)

a(t,) = ,t,=15,t,,=2,At=t, , -t =20-15=5,
At
20) - v (15 517 .35 — 362 .78
a(lG)zV( )-v(@s)
5 5
= 30914 mis®.

10



