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Numerical Integrations

8.1 Introduction

The integrands could be empirical functions given by certain measured values. In
all these instances, we need to resort to numerical methods of integration.
Throughout many engineering fields, there are countless applications for integral
calculus. Sometimes, the evaluation of expressions involving these integrals can
become daunting, if not indeterminate. For this reason, a wide variety of
numerical methods has been developed to simplify the integral.

8.2 Trapezoidal Rule of Integration

In this method, the known function values are joined by straight lines. The area
enclosed by these lines between the given end points is computed to approximate

the integral as shown in Figure 8.1.
b
I = f(x)dx,

where f (x) is called the integrand,a = lower limit of integration, b = upper limit

of integration. Integrating polynomials is simple and is based on the calculus

formula.

¥ = fiz}

: . . ' : : » X
m=dad xj xz XN—_|xy=1b

Figure 8.1 Integration of a function

b ) (bn+l_an+l\
jxdx:| |, n=-1.
a L n+1 )
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b
So if we want to approximate the integral 1 = [ f (x)dx, find the value of the

a

above integral, one assumes f (x) ~ f, (x), Where

f.(x)=a,+ax+..+a ,Xx "~ +ax,

h

is an n" order polynomial. For the trapezoidal rule, assumesn =1, that is,

approximating the integral by a linear polynomial (straight line),

b b
[ f(x)dx = [ f (x)dx.
8.2.1 Derivation of the Trapezoidal Rule
In this section, trapezoidal rule derived by two different methods as follows:

Method 1: Derived from Calculus

b b b

[E(x)dx = [ f (x)dx = [(a, + a ,x)dx

:ao(b—a)+a1\(b @ \| (8.1)
2 )

But what is a, and a,? Now if one chooses, (a, f (a)) and (b, f (b)) as the two

points to approximate f (x) by a straight line from a to b,
f(a)= f,(a)=a,+a,a
f(b) = f,(b)=a,+ab.

Solving the above two equations for a, and a,

f)-fa) o f(ap-f(ba

1

0

b-a b-a
Hence from Equation (8.1),

b _ _ 2_ 2 _
[f(x)dXz—f(a)z f(Ic’)"’l(b—anf(b; fla)b za =(b2a)[f(a)+f(b)]
a —a —-a

= (b - a)[M} (trapezoidal rule).
2
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Method 2: Derived from Newton Forward interpolation
The trapezoidal rule can also be derived from Newton Forward interpolation.
Look at Figure 8.2. The area under the curve f,(x) is the area of a trapezoid.

Substituting n=1 in Equation (5.25) and considering the curve y=f(x) through the

points (x,, x,)and (y,, y,)as a straight line (a polynomial of first degree so that

the differences of order higher than first become zero), we get

X1 X1

1
I, = [ f(x)dx = j(y0+AyO)dx:h[yo+;Ayo}

h[ 1 1 h
=;Lyo+;(y1—yo)J=;(yo+yl)- (8.2)

Similarly, we have
XZ h
I, = [ £(x)dx = ;(yl +,)
" (8.3)

h
I, =] f(x)dx:;(y2+ y3).J|

In general, we have

X

n h
I = | f(x)dx:;(ynflﬁt y,) (8.4)

n

Xn-1

Y

N,

0 My Wy a2 iy

Figure 8.2 Geometric representation of trapezoidal rule.

Adding all the integrals in (8.2)-(8.4) and using the interval additive property of

the definite integrals, we obtain

bz_na [ f(a)+ 2{nz_l f(a+ ih)} 4+ f (b)]

i=1

or
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n Xn h h
I=>1=] f(x)dx:;(yo+2(yl+ Y, * Vgt et Y, )Y, =;(E1+2E2),

i=1 X0

(8.5)
where E, = y, + vy, (sum of the end points), E, =y, + y, + y, +...+ y,_, (sum of the
intermediate ordinates). Equation (8.5) is known as the composite trapezoidal rule.

Example 8.1: The vertical distance covered by a rocket from t =8 to t = 30

.. s0f [ 140000 ] )
seconds is given by x = [ 20001In — 9.8t |dt.
8L L140000—2100tJ J

(a) Use the single segment trapezoidal rule to find the distance covered for t = 8 to
t = 30 seconds.

(b) Find the true error, e, for part (a).

(c) Find the absolute relative true error for part (a).

Solution: Wherea =8, b =30

@ 1~(0b- a)[w} Cand let

[ 140000 ]

f (t) = 2000 In ~-9.8t.
L14oooo— 2100tJ
[ 140000 ]
f(8) =2000In -9.8(8) =177.27 m/s.
140000 - 2100(8)J

[ 140000 ]
f(30) =20001In - 9.8(30) =901.67 m/s.
[140000— 2100(30)J

Hence

[177.27 +901.67 ]
Iz(30—8)t J:11868 m.
2

(b) The exact value of the above integral is

30 I 140000 ] 3
x = []20001In - 9.8t |dt =11061 m.
BL L140000—2100tJ J

So the true error is
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E, = True Value — Approximate Value

=11061-11868 =-807 M.

(c) The absolute relative true error, |e,|, would then be

11061—11868|

True Error
— x100 = 7.2958% .
11061 |

‘E = x100 =

True Value

Example 8.2: Use the trapezoidal rule to numerically integrate f (x) =0.2 + 25x

froma=o0tob=2.
Solution: f(a) = f(0) = 0.2, and f(b) = f(2) = 50.2.

f(b)+ f(a) 50.2 + 0.2

| = (b - a) (2-0)———"-504,
2

The true solution is
2 2
I =] f(x)dx=(0.2x +12.5 xz)} =50.4,
0
0

because f(x) is a linear function, using the trapezoidal rule gets the exact solution.

Example 8.3: Use the trapezoidal rule to numerically integrate
f(x)=0.2+25x+3x_ froma=0tob=2.
Solution: let f(a) = f(0) = 0.2, and f(b) = f(2) = 62.2.

f(b)+f(a)_( 622+ 0.2

| = (b - a) 2-0)———=62.4.
2

) ] 2 2
The true solution is 1 = [ f (x)dx = (0.2 x +12.5 x* + XS)} =58.4 .
0
0
58.4 — 62.4
58.4

The relative error is |e, = x100% = 6.85% .

8.2.2 Multiple-Segment Trapezoidal Rule
In Example 8.1, the true error using a single segment trapezoidal rule was large.

We can divide the interval [8,30] into [8,19] and [19,30] intervals and apply the

trapezoidal rule over each segment.
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(140000 )
f (t) = 20001In - 9.8t,
140000 — 2100t

30 19 30
[ f(t)ydt =] f(t)dt+ | f(t)dt
8

8 19

- (19—8{ ”8“2”19)}(30_19)[ e ”30)]

f(8)=177.27 m/s,

140000
140000 — 2100(19)

f(19):2000In{ J—9.8(19):484.75 m/s,

and f(30)=901.67 mM/s.
Hence

30 [177.27 + 484.75 ] [484.75+901.67 |
| f(t)dtz(lg—B)L J+(30—19)L J=11266 m.
2 2

8

The true error, E, IS E, =11061-11266 = —205 M.

The true error now is reduced from 8o7m to 205m. Extending this

procedure to dividing [a, b] into n equal segments and applying the trapezoidal

rule over each segment, the sum of the results obtained for each segment is the
approximate value of the integral.

Example 8.4: The vertical distance covered by a rocket from t=8 to t=30

.. 0 [ 140000 ]
seconds is given by x = [| 20001n - 9.8t |dt.
L [140000—2100tJ J

8

(a) Use the two-segment trapezoidal rule to find the distance covered from t = 8 to
t = 30 seconds.

(b) Find the true error, , for part (a).

(c) Find the absolute relative true error for part (a).
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Solution:

(a) The solution using 2-segment Trapezoidal rule is

(b) The exact value of the above integral is founded in Example 8.1 (b).

b-af

Lf(a)+.2{

2n

30 -

~

2(2)

8[f(8)+2

Cpaddad (5 3551 J-ud) § (6 38 3S-Silatla edain A3

n-1

i=1

{Zz_lf(8+11i)

i=1

S f(a+ ih)}+ f(b)]

}+ f(30)}=

22
4

22
= —[177.27 + 2(484.75) + 901.67] =11266 m.
4

So the true error is

E, = True Value - Approximate Value=11061-11266 =-205m .

(c) The absolute relative true error,|e, |, would then be

el

True Error

True Value

x100

11061—11266|

For other values of n, see Table 8.1.

Table 8.1 Values obtained using multiple-segment trapezoidal

30
X= |
8

LZOOOIn[

140000 ]

11061

- 9.8t |dt.
l40000—2100tJ J

‘x 100 =1.8537% .

0 Cgﬁjrgxmate E, ‘E t ‘% ‘E . ‘%

1 111868 -807 | 7.296 | ---

2 111266 -205 | 1.853 |5.343

3 11153 -91.4 1 0.8265 | 1.019

4 111113 -51.5 | 0.4655 | 0.3594
5 | 11094 -33.0 | 0.2981 | 0.1669
6 11084 -22.9 1 0.2070 | 0.09082
7 111078 -16.8 | 0.1521 | 0.05482
8 111074 -12.9 1 0.1165 | 0.03560

[f(8)+2f(19)+ f(30)]

rule for
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Example 8.5: Use the multiple-segment trapezoidal rule to find the area under the

300
curve f (x) =
1+e

X
- from x =0 to x =10.

Solution: Using two segments, we get

10-0
2 )
300(0) 300(5)
f(0) = 5 =0, f(5)= s =10.039,
l+e l1+e
300(10)
f(10) = 5 =0.136,
1+e

{f(a)+2{nzlf(a+|h} } 10- { +2{221f0+5)}+f(10)}

i=1

~
~

2n
10 10

= —[ f(0)+2f(5)+ f(10)] = —[0 +2(10.039) + 0.136] =50.537.
4 4

So what is the true value of this integral?

19300
J

dx = 246.59.
ol+e

246.59 - 50.535
246.59

Making the absolute relative true error |e |= x100 =79.506% .

Why is the true value so far away from the approximate values? Just take a look
at Figure 8.3. As you can see, the area under the “trapezoids” (yeah, they really
look like triangles now) covers a small portion of the area under the curve. As we

add more segments, the approximated value quickly approaches the true value.

83539, 100 T T T T

s /\ o
;
60 - \ -
X,

i | \ |

20 i -
0.
0 i}
x
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83.539, 100 T T T T

20 - //\ =

1] 2 4 5 é 8 10
0 x A0,

Figure 8.3 2-segment trapezoidal rule approximations.

Table 8.2 Values obtained using multiple-segment trapezoidal rule for j | X —dx .
ol+e”

0 Cgﬁjr:ximate E, ‘Et‘

1 |0.681 245.91 | 99.724%
2 |50.535 196.05 | 79.505%
4 |170.61 75.978 | 30.812%
8 |227.04 19.546 | 7.927%
16 | 241.70 4.887 | 1.982%
32 | 245.37 1.222 | 0.495%
64 | 246.28 0.305 | 0.124%

Example 8.6: Use multiple-segment trapezoidal rule to find | ?%

Solution: (H.W.)

8.2.3 Error in Multiple-segment Trapezoidal Rule

The true error for a single segment Trapezoidal rule is given by

3
S ) f"(¢), a<¢ <b,where ¢ issome pointin [a,b].
12

t
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What is the error then in the multiple-segment trapezoidal rule? It will be simply
the sum of the errors from each segment, where the error in each segment is that

of the single segment trapezoidal rule. The error in each segment is

[(a+h)-a] h?
E, = - Fr(l)=-—1"(,), a<(, <a+h.
12 12
[(a+2h)-(a+n)] he
E,=- f"(¢,)=——1"(¢,), a+h<{,<a+2h
12 12

3
E':_[(a”h)—(a+(i—1)h)]3 f..(g‘)=—h—f"(gi), a+(i-1)h<¢ <a+ih.
: P ) 12

[b-f{a+(-1h}] h?
E - f°(¢)=——1"(¢), a+(n-1h<¢, <b.
12 12

Hence the total error in the multiple-segment trapezoidal rule is

) h3 n (b a)° b - a)° iaf"(éi)
E,=XE =-—3X ") =- 2 F() =- ;
i=1 1221 12n i=1 12n n
Y (<)
The term =——— is an approximate average value of the second

n

derivative f "(x), a< x <b.

(b-a) o

12n2 n

3 X F7(g))
Hence E, = - :

In Table 8.4, the approximate value of the integral

3Jo(zooomr 140000 T g g4
L | 140000 - 2100t | J ’

8

Is given as a function of the number of segments. You can visualize that as the
number of segments are doubled, the true error gets approximately quartered.

Table 8.4 Values obtained using multiple-segment trapezoidal rule for
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30 [ 140000 )
X= []20001In - 9.8t |dt.
SL L140000—2100tJ J

0 Cgﬁjr:xmate e, ‘e t ‘% |e ) |%

2 | 11266 -205 | 1.853 5.343

4 111113 -52 1 0.4701 | 0.3594
8 | 11074 -13 | 0.1175 | 0.03560
16 | 11065 -4 0.03616 | 0.00401

For example, for the 2-segment trapezoidal rule, the true error is -205, and a
quarter of that error is -51.25. That is close to the true error of -48 for the 4-
segment trapezoidal rule.

8.3 Simpson’s 1/3 Rule

The trapezoidal rule was based on approximating the integrand by a first order
polynomial, and then integrating the polynomial over interval of integration.
Simpson’s 1/3 rule is an extension of Trapezoidal rule where the integrand is

approximated by a second order polynomial.

Ya

-]

Figure 8.3 Simpson’s Integration of a function

Method1l: In Simpson’s 1/3 rule, the function is approximated by a second
degree polynomial between successive points.
Since a second degree polynomial contains three constants, it is necessary to know

three consecutive function values forming two intervals as shown in Figure 8.3.
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Consider three equally spaced pointsx,, x, and x,. Since the data are equally

spaced, from the general formula of Newton-Cotes closed quadrature, let

*n [ n n(2n-3) , n(n—2)2 3 i
=] f(x)dx=nh|y,+—Ay,+ —————A Yo+ ———— Ay, +...|
2 12 24 |

(8.6)
Substituting n = 2 in Eq. (8.6) and taking the curve through the points

(X: ¥o): (%, y,) and (x,,y,) as a polynomial of second degree (parabola) so that

the differences of order higher than two vanish, we obtain

X2 [ 1 , ] h
L= f(x)dx:ZhLyO+4AyO+gA yOJ:g(yO+4y1+ y,) .

Xo
Similarly, we have

)(4 h
I, =] f(x)dx = g(y2 +4y,+ Y.)

X2

X6 h
l,= [ f(x)dx = g(y4 +4y, + Yg)-

X4
In general, we have

I, = }n f(x)dng(yzn-2+4y2n-1+ Yon)- (87)

Xon-2

Summing up all the above integrals, we obtain

X

n h
.= [ f(x)dx = g(y0 +A(Y, + Yt ot You)

Xo

Il
M s

i=1

h
F2(Y, + Y+ Yy )+ Y,) = g(O1 +40, +20,),

where o, =y, +y, (sum of end ordinates), 0, =y, + y, +...+ vy, , (sum of odd
ordinates), o, =y, +y, +...+ y,,_, (Sum of even ordinates). Equation (8.7) is known

as Simpson’s 1/3 rule.

Or
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b r n-1 n-2 —l
{ f(x)dx = bs_naILf(xO)+4lz£ f(x)+2 22: f(x)+ f(xn)J
i=odd i=even

Simpson’s 1/3 rule requires the whole range (the given interval) must be divided
into even number of equal subintervals.
Example 8.7: The distance covered by a rocket in meters from t =8sto t = 30S IS

[ 140000 ] )
| 140000 - 2100t | g'gtJdt '

given by x - 3F[zooom

(@) Use Simpson’s 1/3 rule to find the approximate value of x .
(b) Find the true error, E, .

(c) Find the absolute relative true error, |c |.

Solution:

b;a[f(a)+4f[a+bJ+ f(b)] a-=8, b=3o,asz=19,

@ x=

[ 140000 ]

f(t) = 20001In ~9.8t,
L14oooo— 2100tJ
[ 140000 ]
f(8) = 20001In ~9.8(8)=177.27m /s,
140000 — 2100(8)J

[ 140000
f(30) = 20001n
L14oooo ~2100(30)

1
J_ 9.8(30) =901.67m /s,

f(19):2000In|— 140000 —|—9.8(19):484.75m/s.
140000 - 2100(19)J
Hence
-a (a+b)
f(a)+4fL J+f(b)J

[f(8)+4f(19)+ f(30)]

.
6 |
(30—81
6 )

= 2[177.27 +4x484.75+901.67]=11065.72 m.

6
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(b) The exact value of the above integral is given in Example 8.1. So the true error
IS
E, = True vale-Approximate value =11061.34-11065.72=-4.38m.

11061.34

True Error
x100=0.0396%.

x100 =

(c) Absolute Relative true error, |e |=
True Value

Example 8.8: Use 4-segment Simpson’s 1/3 rule to approximate the distance
covered by a rocket in meters from t=8s to t=30S as given by

30 [ 140000 ] h
X = []2000In - 9.8t (dt.
SL L140000—2100tJ J

(@) Use four segment Simpson’s 1/3 rule to find the x.

(b) Find the true error, g, for part (a).
(c) Find the absolute relative true error, ‘et \ for part (a).

Solution:

(@) Using n segment Simpson’s 1/3 rule, we have

[ ]
b_al n-1 n-2 ’
X ~ ft)+4 3 f(t)+2 X f(t)+ ()
3n | i=1 i=2 |
L i=odd i=even J
b-a 30-8
n=4,a=8, b=30,h-= = =5.5
n 4
and
[ 140000 1
f(t)=2000In - 9.8t
[140000-2100@
So

[ 140000 1
f(t,)= f(8)=2000In -9.8(8)=177.27m /s,
L140000 - 2100(8)J

f(t,)= f(8+5.5)= f(13.5)=320.25m /s,
f(t,)= f(13.5+5.5)= f(19) = 484.75m /s,

f(t,)= f(19+5.5)= f(24.5)=676.05m /s,
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And  f(t,)= f(24.5+5.5)= f(30)=901.67m /s,

Hence
[ 1
b —a | n-1 n-2 |
X ~ ft)+4 > f(t)+2 % f(t)+ f(t)!,
3n | i=1 i=2 ‘
|_ i=odd i=even J
[ 1

30—8| 8 2 |
= f@)+4 ¥ f(t)+2 ¥ f(t)+ f(30)
3(4) | i=1 i=2 |

|_ i=odd i=even J

:%[f(8)+4f(tl)+4f(t3)+2f(t2)+ f(30)]

=

1[ f(8)+4f(13.5)+4f(24.5)+2f(19)+ f(30)]

® |

1

[L77.27 + 4(320.25) + 4(676.05) + 2(484.75) + 901.67]

cn|'_‘

—11061.64m.
(b) The exact value of the above integral is given in Example 8.1. So the true error

IS
E, = True vale-Approximate value =11061.34-11061.64=-0.30m.

True Error
x100=0.0027%.

x100 =

(c) Absolute Relative true error, |e,|=

True Value 11061.34

Table 8.5 Values of Simpson’s 1/3 rule for Example 8.6 with multiple-segments

n Approximate Value | E, ‘et‘

2 11065.72 -4.38 0.0396%
4 11061.64 -0.30 0.0027%
6 11061.40 -0.06 0.0005%
8 11061.35 -0.02 0.0002%
10 11061.34 -0.01 0.0001%

Example 8.9: Use Simpson’s(i) rule to integrate
3

f(x)=0.2+25x+3x- +8x  froma=0tob=2.
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Solution: let f (0) = 0.2, f(1) =36.2 and f(2)=126.2

f0)+4f()+ f(2) 0.2+ 2x36.2+126.2
= (2-0) =90.4
2

I = (b - a)

. . 2 2
The exact integral is 1 = [ f (x)dx = (0.2 x +12.5x + x° + 2x“)} =90.4

0
0

Example 8.10: Use Simpson’s (1) rule to integrate f (x) =0.2 + 25 x + 3x° + 2x"
3

froma=0tob=2.

Solution: let f(0)=0.2, f(1) =30.2 and f(2)=94.2

f(0)+ 4f()+ f(2) 0.2 +2x30.2+94.2
=(2-0) =71.73
2

I = (b - a)

The exact integral is

2 2
l=[f(x)dx=(0.2x+125x" + x° + o.4x5)] =71.2.
0
0

71.2 -71.73

The relative error is x100% = 0.7 % .

€t=

71.2
8.3.2 Error in Multiple-segment Simpson’s 1/3 rule

The true error in a single application of Simpson’s 1/3rd Rule is given by

Et:—uf(“(g’), a<¢ <b.
2880

In multiple-segment Simpson’s 1/3 rule, the error is the sum of the errors in each

application of Simpson’s 1/3 rule. The error in the n segments Simpson’s 1/3 rule

is given by
(Xz—xo)5 (4) h® (4)
E,=—-—2—0 Wy — %)), x, <& <x,.
1 2880 1 90 1 0 1 2
(x, - x,)° h°
E2=— 4 2 f(4)(§2)=—_f(4)(§2), X2<§2<X4.
2880 90
5 5

(X, = Xy 4y) h
Ei=- : 28;(() 2 f(4)(éyi)=—£f(4)(§i), Xoio1) < € < Xy
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(X 2 = X ,4)5 (4) hs (4)
E. =-— . f =-—f , X < <x_.and
1_1 2880 (é/i_l) 90 (é/l_l) n-4 é’l_l n-2
2 2 2 2
5 5
E = (Xn B anz) f (4)( \ h ( \

n - é’n :-—f(4) é’Vn ’Xn—2<§n<xn-
- 2880 - 90 - -

2 2 2

Hence, the total error in the multiple-segment Simpson’s 1/3 rule is

N | S

n n n 2SN
- LA (¢ )——(b _a)Ssz (¢ )——(b_a)s = il
t i 90 -1 I 90n° o I 9on* n
2
> 9%
The term =—— s an approximate average value of ' (x), . a<x<b.
n
(b - a)5 —(4)
Hence E, = - or f, (8.14)
é £
where ) - i=t

n

8.4 Simpson 3/8 Rule for Integration
In a similar fashion, Simpson 3/8 rule for integration can be derived by

approximating the given function f (x) with the 3™ order (cubic) polynomial.
Putting n=3 in (8.6) and taking the curve through (x,,y,), n =0, 1, 2, 3 as a

polynomial of degree three such that the differences higher than the third order
vanish, we obtain

| X3f(x)dx 3hr A 307 LA |

1= Lyo 5 Yo 5 Yo 3 yoJ

X0
3h
= ?(y0 +3y, +3Yy, +VY,)-

Similarly, we get
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3h
I, = f(x)dx:?(y3+3y4+3y5+ Ye) -

3h
l,= [ f(x)dx = ?(yﬁ +3Y, +3Yg+ Yy) -

In general, we have

*3n 3h
=1 f(x)dx:?(y3n73+3y3n72+3y3n71+y3n).

X3n-3

Summing up all the above integrals, we obtain

Xn

h

I = [ f(x)dx = g[(y0 +F3(Y, Y, Y, Yt Yt Yot Yoot Yang)

+2(Y;+ Yo+ Yo+ oot Yo, 2)+ Yo, ], (8.9)
or

3h n-2 n-1 n-3

I :—{f(x0)+3 > o f(x)+3 ¥ f(x)+2 ¥ f(x;)+ f(xn)}.

8 i=1,4,7,. i=2,58,. i=3,6,9,..
Equation (8.9) is called the Simpson’s 3/8 rule. Here, the number of subintervals
should be taken as multiples of 3. Simpson’s 3/8 rule is not as accurate as

Simpson’s 1/3 rule.

The true error in Simpson 3/8 rule can be derived as

5
g:_w_a)xfwuq,WMmasgsb. (8.10)
6480

Example 8.11: The vertical distance covered by a rocket from x=8 to x =30

.. sof [ 140000 ] \
seconds is given by s = | 20001n -9.8x |dx.
8( L14oooo—2100tJ J

Use Simpson 3/8 rule to find the approximate value of the integral.

] b-a b-a 30-8
Solution: h = = = = 7.3333. Hence
n 3 3

Iz%x{f(xo)+3f(xl)+3f(x2)+ f(xs)}.
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( 140000 \

f(x,)= f(8)=2000In ~9.8x8=177.2667 M/s.
L14oooo - 2100 X8J

f(x,)= f(x,+h)= f(15.3333) -372.4629m /s.
f(x,)= f(x,+2h)= f(22.6666)=608.8976m /s.
f(x;)= f(x,+3h)= f(30)=901.6740m /s.

Applying Equation (8.9), one has
3
| = —=x7.3333x{177.2667 + 3x372.4629 + 3x 608.8976 + 901.6740}
8
—11063.3104.
The exact answer can be computed as

| =11061.34 .

exact

Example 8.12: The vertical distance covered by a rocket from x=8 to x =30

.. s0( [ 140000 ] \
seconds is given by s = || 20001In ~9.8x [dx .
L | 140000 - 2100t | J

8

Use Simpson 3/8 multiple segments rule with six segments to estimate the vertical

distance.

) 3
Solution: h = - 3.6666.

6

X, f (X))} ={8,177.2667} .

{x, f(x)} ={11.6666,270.4104}, where
X, = X, +h=8+3.6666 =11.6666.

{xz, f (xz)} ={15.3333,372.4629} where x, = x, + 2h =15.3333.

{ X0 1 (x5)}

{x,, f(x,)} ={22.6666,608.8976} where x, = X, + 4h = 22.6666.

{19,484.7455} where x, = x, + 3h =19.

{XS, f (xs)} ={26.3333,746.9870} where x, = x, + 5h = 26.3333.

{xe, f (xe)} ={30,901.6740} where x, = X, + 6h = 30.
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Applying Equation (8.9), one obtains:

n-2=4 n-1=5 n-3=3
(3. 6666){177.2667+3 Y f(x)+3 % f(x)+2 % f(xi)+901.6740}

i=1,4,. i=2,5,. i=3,6,..

oo|oo

=(1.3750){177.2667 +3(270.4104 + 608.8976 ) +3(372.4629 + 746.9870)

+2(484.7455) +901.6740} =11,601.4696.

b=30
Example 8.13: Compute | = | {[ZOOOIn( 140,000 \—9.8x]}dx,
s | L14o,ooo-2100xJ J

using Simpson 1/3 rule (with n, = 4), and Simpson 3/8 rule (with n, = 3).

Solution: The segment width is h = bra_b-a _30°8 440

n n,+n, (4+3)

a=2=8

>
I

X, =X, +1h =8+3.1429 =11.1429

|
|
|
X, =X, +2h=8+2(3.1429)=14. 2857LSimpson'sl/3 rule
X, = X, +3h =8 +3(3.1429)=17.4286 I

X, =X, +4h=8+4(3.1429)=20.5714
X, = X, + 5h =8+ 5(3.1429)=23.7143
Xg = X, + 6h =8+6(3.1429)=26.8571
X, =X, +7h=8+7(3.1429) = 30,
( 140,000 A

f(x,)= f(8)=2000|nL ~9.8x8=177.2667.

140,000 - 2loox8J
Similarly:
f(x, =11.1429)=256.5863, f(x,)=2342.3241
f(x,)=435.2749, f(x,)=536.3909, f(x,)=646.8260,
f(x,)=767.9978, f(x,)=901.6740.

For multiple segments(n, = first 4 segments), using Simpson 1/3 rule, one obtains

(See Equation (8.9)):
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(h) n-1=3 ng-2=2
S R R I P AR CORRI P

i=1,3,... i=2,...

=4364.1197 .

For multiple segments(n, = last 3 segments), using Simpson 3/8 rule, one obtains

(See Equation (8.9)):

[ 0 e )

_ [_}{ f(ty)+3f(t)+3f(t,)+ 2(no contribution) + f(t,)}
8

3
= {—x 3.1429}{536.3909 +3(646.8260)+3(767.9978)+901.6740}

8

- 6697.3663.
The mixed (combined) Simpson 1/3 and 3/8 rules give

=1 +1,=4364.1197 + 6697.3663=11061.

(i) Comparing the truncated error of Simpson 1/3 rule.

i) e = -0 ey, (8.11)
2880

With Simpson 3/8 rule (See Equation (8.8)), it seems to offer slightly more
accurate answer than the former. However, the cost associated with Simpson 3/8
rule (using 3rd order polynomial function) is significantly higher than the one
associated with Simpson 1/3 rule (using 2nd order polynomial function).

The number of multiple segments that can be used in the conjunction with

Simpson 1/3 rule is 2, 4, 6, 8, ... (any even numbers).
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+4f (x, )+ F(x,)} =(EJ{ f(x,)+4 El f(x)+2 EZ f(x)+ f (xn)}.

3 i=1,3,... i=2,4,6...
However, Simpson 3/8 rule can be used with the number of segments equal to 3,
6, 9, 12, ... (can be certain odd or even numbers that are multiples of 3). If the user
wishes to use, say 7 segments, then the mixed Simpson 1/3 rule (for the first 4

segments), and Simpson 3/8 rule (for the last 3 segments) would be appropriate.
8.7 Gauss Quadrature Rule of Integration

To derive the trapezoidal rule from the method of undetermined coefficients, we

approximated

b
[ f(x)dx ~c, f(a)+c,f(b). (8.23)

a

Let the right hand side be exact for integrals of a straight line, that is, for an

integrated form of

So

=a,(b-a)+a, |- (8.24)

But from Equation (8.23), we want

b
[(a, +a,x)dx =c, f(a)+c,f(b).

To give the same result as Equation (8.24) for f (x) = a, + a,x,

b
J'(aO +a,x)dx =c,(a, +a,a)+c,(a, +a,b)

a
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=a,(c, +¢c,)+a,(c,a+c,b). (8.25)
Hence from Equations (8.24) and (8.25),

(b?-a®)
a,(b-a)+a| , |=a,(c, +c,)+a (ca+c,b).
y
Since a, and a, are arbitrary constants for a general straight line
c,+c,=b-a, (8.26)
bZ _ 2
c,a+c,b= 2 (8.27)
2

Multiplying Equation (8.26) by a and subtracting from Equation (8.27) gives

b-a
5 .

C, =

Substituting the above value of ¢, in Equation (8.26) gives c, = b-a
2

b _ _
Therefore jf(x)dchlf(a)Jrczf(b):b—af(a)+ h-a
2

a

f(b).

8.7.1 Derivation of two-point Gauss quadrature rule

Method 1: The two-point Gauss quadrature rule is an extension of the
trapezoidal rule approximation where the arguments of the function are not
predetermined as a and b, but as unknowns x, and x,. So in the two-point Gauss

quadrature rule, the integral is approximated as

b

| = J' f (x)dx

~c f(x)+c,f(x,).

There are four unknowns x,, x,, ¢, and c,. These are found by assuming that the

21

formula gives exact results for integrating a general third order polynomial,

f(x)=a,+ax+a,x’ +a,x . Hence
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b b
J‘ f(x)dx = J‘(a0 +ax+a,x + asxs)dx

a a

b
[ x x° x* 1
=|a,x+a,—+a, —+a, —
2 3 4 .

=a0(b—a)+al|(b;a\|+a2|(b 2 \|+a (b;a}. (8.28)

2 ) L3 ) L4 )
The formula would then give

b
[F(x)dx ~c f(x)+c,f(x,)

=c,(a, +ax, + a,x + agxf) +c,(a, +a,x, + a,x; + aaxs). (8.29)
Equating Equations (8.28) and (8.29) gives
(b®-a’®) (b°—a’) (b -a®)

ag(b-a)+a| ———|+a, [+ ey ——— |

.2 ) 3 ) U 4 )

=c,(a, +a;x; + ale2 + asxf’) +c,(a, +ax, + a2x22 + a3x§)

= a,(c, +C,) +a,(C X, +C,x,) +a,(c,x. +c,x2)+a,(c,x. +c,x.). (8.30)
Since in Equation (8.30), the constants a,, a,, a,, and a, are arbitrary, the
coefficients of a,, a,, a,, and a, are equal. This gives us four equations as

follows.

b-a=c, +c,,

2 2
b® - a
=C X +C_X
171 2721
2
3 3
b_a 2
=C, X, +C,X
1771 272 0
3
4 4
b —-a
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Without proof (see Example 8.12 for proof of a related problem), we can find that
the above four simultaneous nonlinear equations have only one acceptable

solution

b-a C=b—a X=(b—a\(_1\+b+a
T T vl B
b-a b+a

L _(b-ay( i)
S P V-5 R

Hence

b
[f(x)dx~c f(x)+c,f(x,)

a

:b—af(b—a(_ 1 \+b+a\+b—affb—a( 1 \+b+a\.
> 2 U 2 ) e (B

Method 2: We can derive the same formula by assuming that the expression

b b b b
gives exact values for the individual integrals of [1dx, [xdx, [x’dx, and [x’dx.

a a a

The reason the formula can also be derived using this method is that the linear

combination of the above integrands is a general third order polynomial given
by f(x)=a,+ax+ a2x2 + a3x3.

These will give four equations as follows

b
fldx =b-a=c, +¢,,

a
b b2 2

[ xdx =
a 2

=C, X, +C,X,,

b
24y = 2 2
[ x dx = +C, X, ,

a 3

b3 b4 4
[x dx =
a 4
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These four simultaneous nonlinear equations can be solved to give a single

acceptable solution

Hence
b b-a (b-a/( 1) b+a) b-a (b-af 1) b+a)

if(x)dXz ) fL ) L_\/S_JJF 5 J+ ) fL ) L\/EJJF , J

Since two points are chosen, it is called the two-point Gauss quadrature rule.

Higher point versions can also be developed.
8.7.2 Higher point Gauss quadrature formulas

For example

b
[ f(x)dx ~c, f(x)+c,f(x,)+c,f(x,), (8.53)

a

is called the three-point Gauss quadrature rule. The coefficientsc,, ¢, andc,, and
the function argumentsx,, x, and x, are calculated by assuming the formula gives

exact expressions for integrating a fifth order polynomial

b
2 3 4 5 d
(3, +ax+a,x" +ax +a,x" +ax )dx.

a

General n -point rules would approximate the integral

b
[FOx)dx e f(x)+C, f(X,)+ e, +c f(x.). (8.54)

8.7.3 Arguments and weighing factors for n-point Gauss
guadrature rules

In handbooks (see Table 8.9), coefficients and arguments given for n -point Gauss

guadrature rule are given for integrals of the form
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1

jg(x)dx = T e,g(x,)-

-1

Table 8.9 Weighting factors ¢ and function arguments x used in Gauss

quadrature formulas

Weighting Function
Points | Factors Arguments
¢, = 1.000000000 x, = —0.577350269
¢, = 1.000000000 x, = 0.577350269
c, = 0.555555556 x, = —0.774596669
2 c, = 0.883888889 x, = 0.000000000
¢, = 0.555555556 x, = 0.774596669
3 ¢, = 0.347854845 X, = —0.861136312
c, = 0.652145155 x, = —0.330981044
c, = 0.652145155 x, = 0.339981044
4 c, = 0.347854845 x, = 0.861136312
¢, = 0.236926885 x, = —0.906179846
c, = 0.478628670 x, = —0.538469310
5 c, = 0.568888889 x, = 0.000000000
c, = 0.478628670 x, = 0.538469310
¢, = 0.236926885 x, = 0.906179846
¢, = 0.171324492 x, = —0.932469514
6 c, = 0.360761573 x, = —0.661209386
c, = 0.467913935 x, = —0.238619186
c, = 0.467913935 x, = 0.233619186
¢, = 0.360761573 x, = 0.661209386
¢, = 0.171324492 X, = 0.932469514
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1 b
So if the table is given for [ g (x)dx integrals, how does one solve [ f (x)dx ?

-1 a

The answer lies in that any integral with limits of [a, b] can be converted into an
integral with limits [-1,1]. Let

X=mt+cC.
If x=a, thent=-1

If x=b, thent=+1

such that
- m(-1
a=m(-1)+c) (8.31)
b=m()+c. |
Solving the two Equations (8.31) simultaneously gives
m:b—a andc=b+a
2 2
Hence
b-a b+a b-a
X = t+ and dx = dt.
2 2 2
Substituting our values of x and dx into the integral gives us
b 1 _ —
jf(x)dx:jf(b ax+b+a\b 2 dx. (8.32)
a -1 L 2 2 J 2

b
Example 8.17: For an integral | f (x)dx, derive the one-point Gauss quadrature

a

rule.

Solution: The one-point Gauss quadrature rule is

b
[ f(x)dx~c f(x)).

a

1 1
Assuming the formula gives exact values for integrals |1dx, and [ xdx.

-1 -1
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b
[ldx =b -a=c,,

a

? d b2 _ 2
Xax = = clxl.
a 2
. . b?-a’ b+a
Since ¢, = b - a, the other equation becomes (b - a)x, = X, =
2 2

Therefore, one-point Gauss quadrature rule can be expressed as

b
jf(x)dXz(b—a)f(b+a\.

b
Example 8.18: What would be the formula for [ f(x)dx =c,f(a) +c, f (b),

a

b
if you want the above formula to give you exact values of [(a,x + boxz)dx, that is,

a

a linear combination of x and x>.

Solution: If the formula is exact for a linear combination of x and x°, then

b bz_ 2

[ xdx = =c,a +c,b,

a 2

b b’ -a’

szdx= =cla2+czb2.
3

a

The above equations, in matrix form can be written as follows:

.
|

[ T:| 2
L%J | b® - a®

s

Solving the two above equations simultaneously gives

[a b

Y

[a” b ]

a’+ab-2b°

b

1 —ab-b’+2a°’ 1
c, =—— C. = — —
6

1 ! 2

6 a
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So
b B h2 2 2 B 2
jf(x)dx:—i ab-b" + 2a f(a)_ia +ab-2b £ (b). (8.43)
a 6 a 6 b

Let us see if the formula works.

5
Evaluate j(2x” - 3x)dx using Equation (8.43):

2

5 ) L ,
J(ZXZ‘“)O'Xz"lf(a)“zf(b):_% . 25 = [2(2)" -32)]
2
127+ 2(5)-2(5)°
- [2(5)° - 3(5)] = 46.5 .
6

The exact value of j(2x” - 3x)dx is given by

2

5
5 [2x® 3x*1
f(2x” = 3x)dx = - | =46.5.
2 | 3 2 ],

Any surprises?
5
Now evaluate [3dx using Equation (8.43)

5
[3dx ~c, f(a)+c,f(b)

2

2 2 2 2
_1-2(5)-5"+2(2) (3)_32 +2(5) - 2(5) (3) —10.35.
6 2 6 5

5
The exact value of [3dx is given by

2

J3dx =[3x]. =9.

2

Because the formula will only give exact values for linear combinations of x and

5
x*, it does not work exactly even for a simple integral of j3dx .
2

Do you see now why we choose a, + a,x as the integrand for which the formula
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b
[ f(x)dx =~ c, f(a)+c,f(b),

a

gives us exact values?
Example 8.19: Use two-point Gauss quadrature rule to approximate the distance

covered by a rocket from t = 8 to t = 30 as given by

30 [ 140000 ]

X = [|2000In - 9.8t (dt.
SL | 140000 - 2100t | J

Also, find the absolute relative true error.

Solution: First, change the limits of integration from [s, 30] to [-1, 1] using
Equation (8.32) gives

30 30-8! (30-8 30+8) L
[ f(t)dt= [ f X + dx =11] f(11x +19)dx.
2 2 2 J

8 -1 -1

Next, get weighting factors and function argument values from Table 8.9 for the
two point rule,

c,= 1.000000000,x, = -0.577350269, c, = 1.000000000 and

X, = 0.577350269.

Now we can use the Gauss quadrature formula

1
11f f(11x +19)dx ~11fc, f (11x, +19)+c, f (11x, +19)]

-1

=11[ f (11(-0.5773503) +19) + f (11(0.5773503) +19)]
=11[ f (12.64915) + f(25.35085)]
=11[(296.8317) + (708.4811)] =11058.44 m.

Since

140000
140000 -2100(12.64915)

[ 1
f(12.64915) = ZOOOIW J_ 9.8(12.64915) = 296.8317 ,

140000
140000 -2100(25.35085)

[ 1
f (25.35085) = 2000In{ J_ 9.8(25.35085) = 708.4811.
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The absolute relative true error, |e, |, is (True value = 11061.34 m)

11061.34 -11058.44
\: %100 =0.0262% .

E
11061.34

t

Example 8.20: Solve Example 8.15 by using three-point Gauss quadrature rule.
Solution: First, change the limits of integration from [8, 30] to [-1,1] using
Equation (8.32) gives

30 30-8% (30-8 30+8) L
[ f(t)ydt="——7]f X + dx =11] f(11x +19)dx.
2 L2 2 )

8

-1
The weighting factors and function argument values are

¢, = 0.555555556, x, = ~0.774596669, c, = 0.888888889
x, = 0.000000000, c, = 0.555555556 and x, = 0.774596669,

and the formula is

1
11[ f(11x+19)dx =11[c f (11x +19)+¢c,f (11x, +19)+ ¢ f (11x, +19)]
-1

=11[0.5555556 f (11(~.7745967) +19) + 0.8888889 f (11(0.0000000) +19)
+0.5555556 f (11(0.7745967) +19)]

=11[0.55556 f (10.47944) + 0.88889 f (19.00000) + 0.55556 f (27.52056)]
=11[0.55556 x 239.3327 + 0.88889 x 484.7455 + 0.55556 x 795.1069]
=11061.31m .

Since

140000
140000 -2100(10.47944)

[ 1
f(10.47944) = ZOOOIHL J—9.8(10.47944) = 239.3327,

140000
140000 -2100(19.00000)

[ 1
f(19.00000) = 2000'% J_ 9.8(19.00000) = 484.7455,

140000
140000 -2100(27.52056)

[ 1
f(27.52056) = 2000|nL J—9.8(27.52056) = 795.1069 .
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The absolute relative true error, |e,|, is (True value = 11061.34 m)

11061.34 -11061.31
11061.34

x100 =0.0003%

‘et‘

8.8 Gauss-Legendre Integration Methods

Consider the formula
1 n
[ f(x)dx =% a, f(x,).
-1 k=0

In this case, all the nodes x, and weight «, are unknown. Consider the following

cases.

One-point formula: letn = 0. The formula is given by

[ F(x)dx=a,f(x,).

-1

The method has two unknowns « ;, x, . Making the exact for f (x) =1, x , we get

f(x)=1:2=a,

f(x)=x:0=a,x,0r x,=0.

Hence, the method is given by | f (x)dx = 2 f (0).

-1

L L 2
The error constants is given by ¢ = | x®dx - 2[0] = —.
4 3

C 1
Hence Rlzzf (/I)zgf (1), -1< A<l

Two-point formula: Letn = 1. The formula is given by

1
[ F)dx =a,f(x,)+a, f(x).

-1

The method has two unknownse,, x, ,«, and x,. Making the exact

for f (x) =1, x, x*, x>, we get
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f(x)=1:2=a,+a,,

f(x)=x:0=ax,+a,x,
2 2 2
f(x)=x"1 —=a:X, +ax,
3
3 3 3
f(x)=x":0=a,x, +aX.

Eliminating for « ,, we get o, = o, = 1.

1

And also x, = +

\/_and X, —+\/_

There for, the two point Gauss Legendre method is given by

1
[ f(x)dx = f(-

! 7R

_ L 11
The error constants isgivenby ¢ = | x*dx - [~+ =]= —.
-1 9 9 45

)+ (=

C 1
Hence R, = —f Y ()= — 1), —1<21<1.
41 135

Three-point formula: Letn = 2. The formula is given by

[ EO)dX = a, f(x,)+a,f(x)+a,f(X,).

-1

The method has two unknownse,, x, .«,, x,,«, and x,. Making the exact

fOI’f(x):l,x,xz,xs,x4,x5,Weget
f(x)=1: 2=a,+a, +a,,
f(x)=x: 0=ayX, +a,X +a,x

2727

f(x):xz: —=a, x2+ax +oa, X
3

2727
f(x):x3: O_ax +ax +a2x3,
f(x):x4: —=a, x4+ax +a2x3,

5
f(x):xs: O:aox§+ale +a2x35.
T 5 8
Eliminating for «,, weget o, = —=«a, and a, = —.
0 0 9 2 1 9
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There for, the three point Gauss Legendre method is given by

: il \/E f?
[ F(x)dx=—=|5f(=,[=)+8F(0)+5f(,[—)].
_1 9L 5 SJ

The error constants is given by

C—jx dx——[5( \/7) +0+5(\/7)]
175

Hence

C 1 1
Ry,=—fP)=————t®0)=——1t“1), -1<21<1.
6! (61)175 15750

2
Example 8.21: Evaluate the integral |

11+x

~dx , using Gauss-Legendre 1-point, 2-
point and 3-point quadrature rules. Compare with the exact
solutiont = tan *(4) - =

Solution: first change the interval [1, 21to[-1, 1]. Writing x = at + b, we get

l=-a+b,2=a+hb,

3 1
whose solutionis b = —, a = —. There for, x = (t + 3) / 2, dx = dt / 2,and
2 2
2 2x 1 8(t + 3) !
[ Sdx =], —dt= [ f(t)dt.
11+ x [16 + (t+3)] -1

Using 1-point rule, we get

[ 24 ]
| =2 f(0)=2 = 0.4948.
Lls +18J

Using 2-point rule, we get

| = f(- )=0.3842 + 0.1592 = 0.5434.

7

Using 3-point rule, we get
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LT \/g \/§_|
| == 5f(—[=)+8f(0)+5f(,[)]

[5(0.4393) + 8(0.2474) + 5(0.1379) ] = 0.5406.

© |-

The exact solution is 1=0.5406.
8.8 Gauss-Chebyshev Integration Methods

Consider the formula

1

f(x)dx = Enj a, f(x,).

1
,J‘l "’1 _ X2 k=0
In this case, all the nodes x, and weight «, are unknown. Consider the following

cases.

One-point formula: letn = 0. The formula is given by

1

[

1
—1\/1— X

The method has two unknowns «, x, . Making the exact for f (x) =1, x, we get

f(x)dx =a f(x,).

1
1 ) 1
f(x)=1:] dx = a, or |sin "(x) =a,0la,=r,
“14/1- x° [ ll

1
X
f(x)=x! [ —=—=dx=ax,=00r x,=0,a,=0.

-14/1 - X

Hence, the method is given by

1

]

1
141 - X

The error constants is given by

f(x)dx = 7 f (0).

1 1 5 1 1 712 T

xdx = 2] x2dx = 2 | sinz(e)dH:—.
—l*\/l—x2 0‘\/1—x2 0 3

C Vil
Hence R, = —f"(1)=—1f"(1), -1<4<1.
2! 4

C:

Two-point formula: Letn = 1. The formula is given by
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| f(x)dx =a,f(x,)+a, f(x).
“14/1 - x?

The method has two unknownse,, x, .a, and x,. Making the exact

0 1

for f (x) =1, x, x*, x>, we get

1
f(x)=1:]

dX=a0+a1 or a
2
1-x

f(x)=x:0=ax, +aX,

T
P00 =x"1 == agxg +a,x/,
f(x):x3: 0:a0x§+a1x13.

Eliminating for o, ,we get o, = o, = 7 / 2.

Andalso x, =+ —=and x, =+ —
5 N
There for, the two Point Gauss-Chybyshev methods is given by
[N RS
——f (x)dx = — -—=)+ f(—=) |.
1- x2 ZL \/; \/; J
The error constants is given by
1 1 . r 1 1 iz, T
C=] X dx — —[—+ —]= [ sin (#)dx - —= —
1_ x2 4°4 4 ., 4 8

C T
Hence R, = —f Y1) =— 1), -1<2<1.
41 192

Three-point formula: Letn = 2. The formula is given by

1
[ F)dx =a,f(x,)+a, f(x)+a,f(Xx,).

-1

The method has two unknownse,, x, ,e,, x,,e, and x,. Making the exact

1 1

for f (x) =1, x, x*, x>, x*,x”, we get



Numerical Integrations Cmadadu (g 353 J-cud) ) (5 53 3S-Silatla  edain A 52

f(x)=1: 7=a,+a, +a,,

f(x)=x: 0=ayX, +a, X, +a,x,,

f 2. T 2 2 2
(x)=x"": = a X, +a X +a,X,,

3. 3 3 3
f(x)=x"1 0=a,X,+aX +a,X;,
4 3z 4 4 4
f(X)=x 1 —=ayX, +aX +a,X,,
5 . 5 5 5
f(x)=x"1 0=a,X, +a,X +a,X;.
. - . T T
Eliminating for o ,, we get ¢, = — =, and o, = —.
3 3

3 _ 3
And also x0=i£,xl=0 and x2:+£.
2 2

There for, the three point Gauss- Chybyshev method is given by

1 NG ¥ )

zl 3 3
[ f(x)dx:;|f(——)+f(0)+f(—)|.

1
,11/1_)(2 | 2 2 ]

The error constants is given by

! 1 T 27 27
C=]

6
x dx - —[—+ 0+ —].
,11/1_)(2 3 64 64

Setting x =sin(@),

w2 97 531nx r
C= | sin (0)d - —=2(————)=—.
—zl2 32 6422 32

C i 6)
Hence Ry =—f " "(1)=——f (1), -1<4A<1.
6! 23040

Example 8.22: Evaluate the integral |- x*)*?cos(x)dx, using Gauss-

Chybyshev 1-point, 2-point and 3-point quadrature rules.

Solution: Using 1-point Gauss- Chybyshev rule, we get 1 = = f (0) = 3.14159.

Using 2-point Gauss- Chybyshev rule, we get
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ﬂrf(—1)+f(1)1 rios( )1=059709
BRI 1 Y Rl e

Using 3-point rule, we

=S () + (0)+ f(ﬁ)LZ( (i)cos(—3)+1|—1 13200
3| 2 ] 3 |
EXERCISES

1 a. Evaluate je_xzdx , dividing the range into 4 equal part, Using:
0

I. Trapezoidal Rule , Il. Simpson's Rule (1/3).

b. Evaluate |1 + sin(x)

)ydx , use Simpson's (3/8) rule for n=6.
0 X

c. Use the Simpson's rule (1/3) to approximate j

dx with n=8.
'\/X +1

2 a. Determine the step size h required in order for the Simpson’s Rule (1/3) to

8
approximate the integral | xsin(x)dx, with an error of at mosti1o~*.
0

0.5

[ xIn(x+2)dx, approximate by the Simpson’s
-0.5

b. Find the error bound for

rule (1/3).

0.5

c. Evaluate |
o COS(X)

dx with n=10, use Simpson’s rule (1/3).

2

3. Evaluate the integral [x e " d

0

Ii. Simpson (1/3) Rule.

, h=0.25 using i. Trapezoidal rule,

3
4. Evaluate jMd

x using the Gauss-Legender three points.
>1+ sin(x)
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2.2
5. Evaluate jw

—dx using the Gauss-Legender three points.
o 1+ (x+1)

2
6. Evaluate je” dx using Romberg for h=1, compare with the exact solution.
0

1

7. Evaluate |
01+e”

dx using Romberg for h=1.

2

-1

8. Evaluate [cos(2x) (1- x?) 2 dx use Gauss-Chybeshev quadrature formula for

0

three points.

2
=X

e

9. Evaluate | dx use Gauss-Hermite formula, n=2.

ol + X

2



