Group and Ring

Shno Othman Ahmed

Group

Deffinition: A group is a set *G* together with a binary operation *, denoted by (*G*, *)

$$(a,b) \mapsto a * b: G \times G \rightarrow G$$

- satisfying the following conditions:
- G1: *(closure)* if \forall a; b \in G; a * b \in G
- G2: *(associativity)* for all $a, b, c \in G$,
 - a * (b * c) = (a * b) * c

G3: (existence of identity element) e ∈ G such
that ∀ a ∈ G; e * a = a * e = a
e is an *identity element* for (with respect to *)

G4: (existence of inverses) for each $\forall a \in G, \exists a^{-1} \in G$

such that $a * a^{-1} = a^{-1} * a = e$.

then a⁻¹ is **an inverse element** of a.

then (G,*) is a group.

Note: If the * satisfy the *commutative* property ; if \forall a; b \in G;

$$a * b = b * a$$

then (G,*) is commutative (abelian) group.

Proposition:Let (G,*) be any group, then:

1-The identity element is unique.
2-Any element a have one inverse element a⁻¹

Example :

Show that the set of all integers ...,-4, -3, -2, -1, 0, 1, 2, 3, 4, ... is an infinite Abelian group with respect to the operation of addition of integers (*Z*,+)

Solution:

Let us test all the group axioms for Abelian group. (G1) Closure Axiom. We know that the sum of any two integers is also an integer, i.e., for all $a, b \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

Thus \mathbb{Z} is closed with respect to addition.

(G2) Associative Axiom . Since the addition of integers is associative, the associative axiom is satisfied, i.e.,

for $a, b, c \in \mathbb{Z}$

Such that a + (b + c) = (a + b) + c

(G3) Existence of Identity. We know that ⁰ is the additive identity and $0 \in \mathbb{Z}$, i.e., 0 + a = a = 0 + a $\forall a \in \mathbb{Z}$ Hence, additive identity exists.

(G4) Existence of Inverse. If $a \in \mathbb{Z}$, then $-a \in \mathbb{Z}$. Also, (-a) + a = 0 = a + (-a) Since addition of integers is a commutative operation, therefore a + b = b + a $\forall a, b \in \mathbb{Z}$

Hence $(\mathbb{Z}, +)$ is an Abelian group. Also, \mathbb{Z} contains an infinite number of elements. Therefore $(\mathbb{Z}, +)$ is an *Abelian group* of infinite order.

Example: $(Q,+), (Q \setminus \{0\},.) (R,+), (R \mid \{0\},.), (C, +) and (C \setminus \{0\},.) are groups .$

Example:(N,+),(N,.) and *(Z,.)* are not groups.

Semigroup: is an algebraic structure consisting of a set together with an associative binary operation.

or

A semigroup is a pair (S, *) where S is a non-empty set and * is an associative binary operation on S. Example: (N,+) is semi group (N,+) is semi group

If a, b, c \in Z then a*(b*c) \in Z a*(b*c)=a+(b+c)=(a+b)+c=(a*b)* c 2+(6+1)=9=(2+6)+1=9

So it is associative

Subgroups

Definition: A subgroup **H** of a group G is a non-empty subset of G that forms a group under the binary operation of G.

or

Definition: Let S be a nonempty subset of a group G. If

- $S_1: a; b \in S \longrightarrow a*b \in S$, and
- $S_2: a \in S \longrightarrow a^{-1} \in S$

then the (S, *) is a subgroup of a group (G, *).

Example: (Z, +) is subgroup of group(Q, +).

(Z,+) is subgroup of group(R,+).

(Q,+) is subgroup of group(R,+).

(R,+) is subgroup of group(C,+). (Q\{0},.) is subgroup of group(R\{0},.). (R\{0},.) is subgroup of group(C\{0},.).

Z is a subset of Q (Z,+) is a subgroup of (Q,+)(Q,+) IS A GROUP 1) If a, b \in Z then a+b \in Z -7,3 ∈ Z -7+3= -4 ∈ Z 1) If a \in Z then $a^{-1} \in Z$ $2 \in \mathbb{Z}$ then $-2 \in \mathbb{Z}$

-2 is inverse of 2

2+(-2)=0 0 is identiy of + in Z

Ring

A ring is defined as a non-empty set R with two binary operations $+, \cdot : R \times R \rightarrow R$ with the properties: (i) (R, +) is an abelian group (zero element 0);

(ii) (R, \cdot) is a semigroup;

(iii) for all $a, b, c \in R$ the distributivity laws are valid:

(a + b)c = ac + bc, a(b + c) = ab + ac.And it's denoted by (R, +, .)

Note:

1-*The ring* R *is called commutative if* (R, \cdot) *is a*

commutative semigroup, i.e. if ab = ba for all $a, b \in R$.

2-If there is an identity for multiplication, then R is said to have identity.

Example:

(Z,+,.) is a commutative ring with identity 1. (Q,+,.) is a commutative ring with identity 1. (R,+,.) is a commutative ring with identity 1.

(C,+,.) is a commutative ring.

EXAMPLE :-

(Z,+,.) IS RING (Z,+) is ablian group

for all $a, b \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

Thus \mathbb{Z} is closed with respect to addition. for $a, b, c \in \mathbb{Z}$

Such that a + (b + c) = (a + b) + c

(G3) Existence of Identity. We know that ⁰ is the additive identity and $0 \in \mathbb{Z}$, i.e., 0 + a = a = 0 + a $\forall a \in \mathbb{Z}$. Hence, additive identity exists. (G4) Existence of Inverse. If $a \in \mathbb{Z}$, then $-a \in \mathbb{Z}$. Also (-a) + a = 0 = a + (-a) Therefore \mathbb{Z} is a group with respect to addition.

Since addition of integers is a commutative operation, therefore a + b = b + a $\forall a, b \in \mathbb{Z}$

Hence $(\mathbb{Z},+)$ is an Abelian group. Also, \mathbb{Z} contains an infinite number of elements. Therefore $(\mathbb{Z},+)$ is an *Abelian group* of infinite order.

(Z,.) is semi group If a, b c \subseteq Z then a.(b.c) \subseteq Z a*(b*c)=a.(b.c)=(a.b).c=(a.b).c 2.(6.1)=12=(2.6).1=12

1 is identity for multiplication (.)

1.a=a

5.1 = 5